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Abstract— Driver Distraction Detection (3D) is of great signif-
icance in helping intelligent vehicles decide whether to remind
drivers or take over the driving task and avoid traffic accidents.
However, the current centralized learning paradigm of 3D has
become unpractical because of rising limitations on data sharing
and increasing concerns about user privacy. In this context,
3D is further facing three emerging challenges, namely data
islands, data heterogeneity, and the straggler issue. To jointly
address these three issues and make the 3D model training and
deployment more practical and efficient, this paper proposes
an Asynchronous Federated Meta-learning framework called
AFM3D. Specifically, AFM3D bridges data islands through Fed-
erated Learning (FL), a novel distributed learning paradigm that
enables multiple clients (i.e., private vehicles with individual data
of drivers) to learn a global model collaboratively without data
exchange. Moreover, AFM3D further utilizes meta-learning to
tackle data heterogeneity by training a meta-model that can adapt
to new driver data quickly with satisfactory performance. Finally,
AFM3D is designed to operate in an asynchronous mode to
reduce delays caused by stragglers and achieve efficient learning.
A temporally weighted aggregation strategy is also designed to
handle stale models commonly encountered in the asynchronous
mode and in turn, optimize the aggregation direction. Extensive
experiment results show that AFM3D can boost performance in
terms of model accuracy, recall, F1 score, test loss, and learning
speed by 7.61%, 7.44%, 7.95%, 9.95%, and 50.91%, respectively,
against five state-of-the-art methods.

Index Terms— Driver distraction detection, federated learning,
asynchronous federated learning, federated meta-learning.
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I. INTRODUCTION

IN RECENT years, to meet the increasing travel demands,
the number of vehicles has risen significantly. Moreover,

thanks to the rapid development and adoption of advanced
technologies such as Mobile Edge Computing (MEC), Artifi-
cial Intelligence (AI), and Information and Communication
Technology (ICT), vehicles nowadays are equipped with
diverse sensors (such as cameras) as well as sufficient com-
puting capacities to support various AI tasks, e.g., to train
a deep learning model based on image data to detect driver
distraction [1], [2].

Since fully autonomous driving vehicles still have a long
way to go due to technical and ethical issues, humans are still
the main operators of vehicles in the field. However, unlike
machines that can always focus their attention on the driving
task, humans may be distracted and thus, endanger the safety
of driving. According to several survey reports [3], [4], most
traffic accidents are directly or indirectly caused by driver
distraction. Thus, intelligent vehicles are increasingly being
equipped with Driver Distraction Detection (3D) capabilities
to perform timely interventions, e.g., reminding drivers of their
states or taking over the driving task, in order to improve road
safety and avoid potential traffic accidents.

However, the increasing restrictions on data security and
user privacy make it unfeasible to solve the 3D problem with
a centralized learning paradigm. The sensitive data of drivers
collected by vehicles may leak user privacy when transmitted
to a data center for model training [5]. Although AI-Generated
Context (AIGC) [6] model such as GPT-4 may generate
artificial data, it still relies on massive data for training in
the cloud (which may also violate the regulations). Moreover,
in view of data diversity and model robustness, artificial data
can’t completely reflect real-world scenarios, hence the real
and private data of drivers are still necessary for 3D. As an
emerging learning paradigm, Federated Learning (FL) [7]
can bridge data islands caused by regulations and leverage
computing and communication resources owned by multiple
entities in a distributed and collaborative manner. In a general
FL system, multiple clients train local models based on their
own data and then upload the model parameters to a server for
global aggregation. Once the global model is updated on the
server side, it will be transmitted to the client side for another
round of local training. Although FL has been widely applied
to various data-sensitive domains such as healthcare [8],

1558-0016 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on August 18,2024 at 09:59:38 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9883-5289
https://orcid.org/0000-0001-6287-8095
https://orcid.org/0000-0002-9965-0948
https://orcid.org/0000-0002-3606-0553
https://orcid.org/0000-0001-6893-8650
https://orcid.org/0000-0002-9307-2120


9660 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 8, AUGUST 2024

the feasibility study of FL in the context of 3D is still
limited.

With the support of FL, although the data island issue of
3D can be tackled, the data heterogeneity and straggler issues
remain open. Since data sharing is not permitted in FL, and
local data are related to driver behavior and preference, there
exists intrinsic data heterogeneity [9], [10], such as imbalanced
data sizes, missing certain classes, and non-identical data
distributions, which impedes the application of FL in 3D.
There is still a lack of discussion about how to learn a
shareable model with better initial parameters collaboratively
based on such heterogeneous data and then localize it quickly
at each client for a performance boost. Moreover, as intelligent
devices to manage and process driver data, vehicles, in general,
have different communication capacities due to their prices,
manufacturers, and running environments. Thus, it is not well
suited for synchronous FL frameworks (such as FedAvg)
requiring all clients to work at the same pace. This is because
the stragglers [11], whose computing powers are lower than
others, may affect the overall learning performance. How
to unify vehicles with dynamic and unstable communication
conditions and make the collaboration mode more practical,
is still an open problem.

To jointly tackle the above-mentioned three challenges faced
by 3D in the new context, this paper proposes a novel asyn-
chronous federated meta-learning framework, named AFM3D.
First, to bridge data islands, a general FL framework is
designed to utilize the data of drivers and also the dispersed
resources of vehicles in a collaborative and private-preserving
manner. Second, to address the data heterogeneity issue and
train an initialized model that can adapt to new data and tasks
quickly, AFM3D incorporates the FL framework with meta-
learning to train a global meta-model with high generability.
Finally, to tackle the straggler issue in the synchronous mode
of FL in the context of 3D, as shown in Fig. 1 (A), AFM3D
introduces an asynchronous mode, i.e., once the predefined
condition is satisfied (i.e., the maximum waiting time is
reached), the server will aggregate all received models from
clients immediately to update the global model as illustrated
in Fig. 1 (B). Since the asynchronous FL (AFL) doesn’t
need to wait for stragglers as compared to the synchronous
FL (SFL), a temporally weighted aggregation strategy is also
implemented in the framework to further address the latent
model issue caused by AFL.

In general, the main contributions of this paper are summa-
rized as follows:

• Compared to conventional solutions, the proposed frame-
work AFM3D can not only accommodate devices with
capabilities and availabilities changing spatiotemporally
but also train a sharable and personalizable model with
user privacy protected;

• To address the spatiotemporal heterogeneity among
devices, AFM3D implements an asynchronous learning
procedure that can not only accelerate the learning speed
through unblocking collaboration among devices but
also improve the model performance by the temporally
weighted global model aggregation;

TABLE I
LIST OF ABBREVIATIONS USED IN THIS PAPER

• To support the needs of rapid adaptation and accurate
personalization, the proposed framework separates the
model learning and deployment phases to first train an
initial model with structural knowledge and then fine-
tune it locally for personalized models to better support
the 3D task of different users.

To the best of our knowledge, this paper is the first of its
kind to support practical 3D tasks by investigating Federated
Meta-learning (FM) and implementing it in asynchronous
mode. According to the holistic evaluation based on two
standard 3D datasets and six popular AI models, the proposed
framework AFM3D can improve test accuracy, recall, and F1
score by 7.61%, 7.44%, and 7.95%, respectively, reduce test
loss by 9.95%, and shorten learning time by 50.91% compared
with the best among five state-of-the-art methods.

The remainder of this paper is organized as follows.
Section II summarizes related work about 3D. AFM3D is
presented and evaluated in Section III and Section IV, respec-
tively. Section V concludes the work and sketches the future
research directions. Note that for legibility, the abbreviations
used in this paper are summarized in Table I.

II. RELATED CHALLENGES AND SOLUTIONS

In this section, first, three challenges encountered by 3D in
the new context are identified, and then related solutions are
summarized to disclose the current research gap.

A. Challenges of Driver Distracted Detection (3D)

In general, three urgent challenges are faced by 3D, namely:
• C1: Data Island. With the promulgation of regulations

related to data security and user privacy worldwide, the
traditional centralized paradigm, i.e., sharing the private
data of drivers sensed by vehicles, is impracticable,
resulting in the data island issue, i.e., a large amount of
isolated data are dispersed in each vehicle and can not be
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Fig. 1. The comparison between FL in synchronous mode and asynchronous mode.

fully utilized to train a high-performance AI model and
support the 3D task efficiently and effectively [5], [12].

• C2: Data Heterogeneity. Since data sharing among
vehicles is forbidden, and the data collection is related to
specific driver behavior, the local data is heterogeneous
from each other. E.g., some vehicles may have massive
driver data with low resolution while other vehicles may
have very small amounts of driver data with high quality.
Without tackling such a heterogeneity issue properly,
it will cause model deterioration [13], e.g., the model
performance dropping dramatically on unseen data [14].

• C3: Straggler Issue. Since moving vehicles are equipped
with different computing and communication devices, and
their connection status may vary according to the actual
environments (e.g., suburbs with poor communication
infrastructures), when collaboratively training a shareable
model, some impotent vehicles, i.e., the stragglers, may
impede the overall learning process [15] and also the
overall training efficiency.

Accordingly, several solutions have been proposed to
address the three challenges separately, which will be dis-
cussed in the following subsections.

B. Solutions to Data Island

As a novel distributed learning paradigm, FL is drawing
increasing attention from both academic and industry com-
munities to bridge data islands efficiently and effectively.
A typical FL framework contains a server and several clients
to collaboratively learn a global model [7]. Although the
sensitive data of clients will not be shared, the parameters of
the local model trained based on local data will be transmitted
to the server to help form a global model. Moreover, FL has
been widely applied to the transportation domain to fulfill
specific tasks, e.g., an FL and graph representation-based
algorithm called FedSTN is proposed to predict urban traffic
flow accurately [16]; and an FL and Internet of Electric
Vehicles-based mechanism named FL-PDMIM is designed to
place mobile charging stations effectively [17]. Specifically,
an SFL-based framework, called CNN-Bi-LSTM, is present
to detect driver distraction [5]. However, it is still missing to

conduct in-depth research on FL for 3D to harness isolated
data in a spatiotemporally changeable environment.

C. Solutions to Data Heterogeneity

In general, meta-learning and knowledge distillation (KD)
are two widely discussed solutions about data heterogeneity.
As a learning to learn approach, meta-learning can encode
meta-knowledge into an initialized model with high general-
izability [18]. In this context, the data heterogeneity can be
efficiently tackled and model localization or personalization
can be easily conducted to support 3D tasks in new contexts
with optimized performance [19]. As for the meta-model
training algorithms, such as MAML (Model-Agnostic-Meta-
Learning) [20], [21] and its various variants, e.g., Reptile [22],
have been proposed and widely used for gradient-based
models in classification, regression, and reinforcement learn-
ing [23]. Moreover, FM [24], [25] has been utilized in
several real-world transportation tasks to harness sensitive and
heterogeneous data, e.g., adopting FM to help car parks with
poor-data predict parking occupancy [26], [27], and using
layer-wise FM to consider data growth phenomenon and tackle
communication consumption issue for image classification
tasks [28]. However, how to adopt FM to support 3D is still
undiscussed.

As for KD, it aims to learn a student model using knowledge
distilled from teacher models. Canonical KD for FL research
requires a proxy dataset on the server side to measure and min-
imize the discrepancy between the student model and teacher
model [29], which is impractical in many real-world scenarios
due to data limitations. Such that, more recently, the data-free
KD has been studied to distillate knowledge without proxy
dataset via generative learning [30], [31]. However, compared
with meta-learning, KD methods mainly focus on the general
performance instead of the personalized performance of the
local model required by different users [32], [33].

D. Solutions to Stragglers

Generally speaking, the straggler issues can be addressed
by managing clients asynchronously or hierarchically. As for
asynchronization, it is well-known as AFL, which relieves
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TABLE II

THE OVERALL EVALUATION OF REVIEWED SOLUTIONS ( SUPPORTED⃝ NOT SUPPORTED)

the straggler problem by performing local training and global
aggregation at an arbitrary time [38], [39]. As the first AFL
algorithm, FedAsync [40] can update the global model imme-
diately with a mixture aggregation parameter once a local
model is received by the server. As the successor, ASO-
Fed [41] inherits such an asynchronous manner and introduces
online learning into AFL, i.e., the local data of AFL clients is
accumulated gradually during the training process. However,
asynchronous updates introduce the challenge of staleness,
as the outdated model may add noise to the training procedure,
deteriorate model performance or prevent convergence [42].
To resolve that, Ma et al. [34] propose a semi-asynchronous
FL mechanism called FedSA to resist the staleness effect
by aggregating a certain number of local models based on
the communication budget. FLEET [35] relieves the staleness
effect by dampening the impact of outdated results. The
dampening factor is determined by time staleness and the local
data novelty. Liu et al. [11] aggregate deep and shallow layers
of Deep Neural Networks (DNNs) with different frequencies
and assign aggregation weights adaptively according to the
freshness of model parameters. However, since AFL is still in
its infancy, its integration with meta-learning for 3D is still
missing.

Moreover, the hierarchical structure can be implemented
by clustering, which is to manage heterogeneous clients into
different clusters according to their computing or communi-
cation capabilities. Such that, within a cluster, the time cost
among clients is similar and the unnecessary long waiting
can be avoided. E.g., a mechanism called FedCH is pro-
posed to optimize the number of clusters considering resource

budgets and then form an efficient cluster topology [36]; and
a system named FedAT is present to organize clients into
tiers based on their response latencies. Accordingly, it can
execute intra-tier training synchronously and cross-tier training
asynchronously [37]. However, these cluster-based methods
can easily introduce biases and high complexity into training.

E. Summary

As summarized in Table II, current research can address one
or two of the three emerging challenges faced by 3D. However,
an integrated mechanism that can jointly solve three issues in
3D is still missing. To fill this gap, we propose a framework
named AFM3D that can simultaneously bridge data islands
with FL, tackle data heterogeneity with meta-learning, and
relieve straggler issues with asynchronous mode.

III. AFM3D: AN AFM FRAMEWORK FOR 3D

As illustrated in Fig. 2, the proposed framework AFM3D
mainly contains four consecutive steps, i.e., 1) 3D task release:
target vehicles release the 3D task according to their needs; 2)
local meta-training: source vehicles (i.e., clients) respond to
the tasks voluntarily and execute local meta-training based on
the training configuration and their own data, and then upload
the updated local model parameters to the server; 3) global
aggregation: the server receives local models from clients
constantly and executes the global aggregation regularly; and
4) model adaptation: after the global model is learned, it is
deployed to target vehicles for their own 3D tasks through
fast adaptation of the global meta-model. In the following
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Fig. 2. The overview of AFM3D. The local meta-training at the client side and the global aggregation at the server side are executed asynchronously
and iteratively to train a global model collaboratively once a 3D task is released by several target vehicles. After the above AFM3D training, the learned
meta-model can adapt to target vehicles quickly by their own driver data with high performance.

TABLE III
LIST OF KEY NOTATIONS USED IN AFM3D

subsections, first, the research problem is defined, and then,
the four steps are introduced. Note that for readability, the
notations used in AFM3D are summarized in Table III.

A. Problem Definition

In view of regulations about data security and user privacy,
assume that the sharing and exchanging of sensitive driver data
are strictly forbidden, and as shown in Fig. 2, an asynchronous
federated meta-learning framework is considered with K vehi-
cles (which are clients in the training of model) and one
server to learn a global model satisfying the demands of
target vehicles. Specifically, each client has a private dataset Sk
with labels, i.e., Sk = (Xk, Yk). Moreover, Sk is divided into
support set Sspt

k and query set Sqry
k for meta-learning. Assume

that each client has the abilities of model training and model
uploading, however, the running states may be various due to
heterogeneous communication and computation resources.

Based on the above settings, the goals of this framework
are 1) to train an initialized model by managing hetero-
geneous clients asynchronously with low training cost (i.e.,
less learning time), and then, 2) to adopt the meta-model in
individual 3D task rapidly with high model performance (i.e.,
high accuracy or low error). Accordingly, the optimization
problems are defined in Formula 1 and Formula 2, respectively.

min
C

T̂∑
t=1

ct (1)

min
θ

K∑
k=1

Lk(θ, Sqry
k ) (2)

where C is the accumulated training cost; T̂ is the first round
when the desired performance target is reached; ct is the cost
in the t th round; θ stands for the trained model; and Lk is the
loss function of client k, e.g., cross-entropy.

In summary, this paper intends to resolve the two opti-
mization problems jointly by proposing a collaborative and
asynchronous FM framework for 3D, which includes 3D task
release, local meta-training, global aggregation, and model
adaptation as shown in Fig. 2.

B. 3D Task Release

Various types of vehicles have urgent demands of 3D, e.g.,
buses or long-distance trucks, whose safeties are extremely
important and driver distractions are greatly dangerous. How-
ever, they may not have sufficient and high-quality data to
train a high-performance model by themselves due to various
reasons, e.g., vehicles newly put into use possess limited
data. Thus, they need the data and knowledge from other
vehicles/drivers to help them train a fine model.

These target vehicles can release a 3D task via the proposed
framework to meet their needs. Then, the server will respond
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to the request and orchestrate multiple clients as participants
to train a model under the framework. Note that the server
will transmit necessary information to clients before the train-
ing according to the needs of target vehicles, e.g., model
architecture and hyper-parameters. Specifically, as a general
framework, AFM3D supports various deep learning models,
such as DenseNet, ResNet, MobileNet, and MnasNet series.

C. Local Meta-Training

First, once a source vehicle joins AFM3D as a client k,
it will receive the latest global model θ tk from the server as
its current local model θk . Second, an intermediate model θ̂k
is computed based on Sspt

k according to Formula 3,

θ̂k = θk − α∇θkLk(θk, Sspt
k ) (3)

where α is the inner learning rate.
As the goal is to find the model that has fast adaptability to

new data, the updated intermediate model is further evaluated
on the query set with the loss L(θ̂k, Sqry

k ) and update the model
in the direction that can fast adapt to query set with Formula 4,

θk = θk − β∇θkL(θ̂k, Sqry
k ) (4)

where β is the outer learning rate. In this way, the trained
model θk is sensitive to local data changes and can be adopted
to new tasks quickly. Note that there is a derivative operation
in the expansion of θ̂k , thus Formula 4 requires to compute
the second-order derivation. Specifically, the expanded form
can be expressed as Formula 5,

∇θkL(θ̂k, Sqry
k ) = ∇θk,τ

L(θk,τ , Sqry
k,τ )

·

τ∏
i=0

(I − α∇θk,i−1(∇θkL(θk,i−1))) (5)

where τ denotes the number of local gradient update steps.
Since second-order derivation is complex, the First-Order
Model-Agnostic Meta-Learning (FOMAML) [20] is adopted
to get an approximate form as shown in Formula 6,

∇θkL(θ̂k, Sqry
k ) ≈ ∇θk,τ

L(θk,τ , Sqry
k,τ ) (6)

Such that, Formula 4 can be rewritten into Formula 7.

θk = θk − β∇
θ̂k
L(θ̂k, Sqry

k ) (7)

Finally, after the local training is completed, client k uploads
local model θk to the server immediately and then, waits for
the new global model from the server for the next round of
local meta-training.

D. Global Aggregation

In the designed asynchronous mode, the server receives
updated local models from clients constantly and runs the
aggregation process regularly, which is triggered by a pre-
defined timer (e.g., waiting for 10s). Since the connectivity
of vehicles may vary over time, the number of local models
received by the server can be different in each round. Hence,
the global aggregation function can be written as Formula 8,

θ t+1
=

Kt∑
k=1

(ηk × θk) (8)

where Kt is the number of local models received in the t th

round, ηk is the aggregation weight of client k, and θ t+1 is the
updated global model. Note that in canonical federated meta-
learning methods, ηk =

1
Kt

indicates an average operation,
i.e., each local model is considered to contribute equally to
the global model.

Moreover, as illustrated in Fig. 1 (B), in asynchronous
mode, some uploaded local models may be stale in the
aggregation procedure, e.g., the local model of client 5 created
in round 3 is to be aggregated in round 5. Intuitively, the
latest model, e.g., the model of client 3 created and aggregated
in round 5 deserves a higher aggregation weight than the
stale local model mentioned above, as it provides the newest
information. However, the average aggregation operation may
become inefficient to address such a temporal heterogeneity
in asynchronous mode, as it considers local models equally.

Hence, in this study, a temporal weight (TW) strategy is
proposed as defined in Formula 9,

T W t
k =


e−(t−tk ), exp

1
t − tk + 1

, inv

1
log(t − tk + 1)+ 1

, log

(9)

where T W t
k is the TW of client k in the t th round, e is the

natural logarithm, and tk stands for the round when the local
model of client k is created. Note that the choice of the three
functions, i.e., exponential, inverse, and logarithmic functions,
is based on related research about AFL [40], which shows
that these functions can add values to the global model by
alleviating the impact of stale models. As for the performance
comparison of the three TW functions, related results can be
found in Section IV-E.

Then, TW is applied in the global aggregation, and accord-
ingly, it transfers Formula 8 into Formula 10,

θ t+1
=

Kt∑
k=1

(T W t
k × θk) (10)

where T W t
k = (T W t

k/
∑Kt

k=1 T W t
k ) is the normalized weight.

Such that, the more recent the local model is, the higher tempo-
ral weight it has in the aggregation. Intuitively, by computing
aggregation weights T W t

k adaptively, θ t+1 can alleviate the
effect of stale models to improve the performance of the global
model.

After the global model is updated, the server will distribute
it to the clients to start the next round of local meta-training if
the stop condition is not matched (e.g., the maximum learning
time, or the target accuracy); otherwise, the local adaption of
the global model is ignited by target vehicles.

E. Model Adaptation

Once the global meta-model φ is trained based on the above
three steps, the target vehicle j downloads φ from the server
as the initialized model, and adapts it for the context defined
by the local data T j according to Formula 11,

φ j = φ j − α∇φ jL j (φ j , T j ) (11)
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where φ j is the personalized model of target vehicle j .
In general, the meta-model is sensitive to new data T j . Even
if the data size of T j is small, a few updating steps (even
one step) of Formula 11 can improve the performance of φ j
significantly. Such that, the target vehicle can better support
its 3D task with the adopted local model.

F. Algorithm of AFM3D

There are two types of important models in AFM3D, namely
1) the meta-model, which is trained by collaborating with
source vehicles; and 2) the personalized model, which is
adopted by the target vehicle. Hence, the algorithms to train
the two models are introduced, respectively.

Algorithm 1 AFM3D for Meta-Model
PART 1: Executed in each source client

1: for k ≤ K in parallel do
2: Receiving the global model θtk as θk

3: Training θk according to Formulas 3 and 7
4: Uploading θk and tk to the server
5: end for

PART 2: Executed in the AFM3D server
1: Thread 1: Receiving θk and tk from clients consistently
2: Thread 2: Aggregating local models regularly
3: while the waiting time is reached do
4: T W t

= 0
5: for k ≤ Kt do
6: Calculating T W t

k according to Formula 9
7: T W t

+ = T W t
k

8: end for
9: T W t

k ← T W t
k/T W t

10: Aggregating according to Formula 10
11: Transmitting θt+1 to clients
12: end while

Algorithm 2 AFM3D for Personalized Model
PART 1: Executed in the AFM3D server

1: Waiting for the download request from target vehicles
2: Distributing the meta-model φ to target vehicles

PART 2: Executed in each target vehicle
1: Sending the request for the meta-model to the server
2: Downloading the meta-model φ from the server
3: Initializing the personalized model φ j = φ

4: Updating the model φ j according to Formula 11
5: Applying the model φ j for the 3D task

1) Algorithm of AFM3D for Meta-Model: As shown in
Algorithm 1, the algorithm for meta-model consists of two
parts, namely:

• Part 1: In Each Client. First, AFM3D client k receives the
global model θtk from the server in the tk round as its local
model θk . Second, θk is updated according to Formulas 3
and 7. Finally, after the local meta-training, θk and tk are
uploaded to the server for global aggregation.

• Part 2: In the Server. First, the AFM3D server receives
local models from clients continuously. Second, once the
predefined waiting time is reached, the server will start
the global aggregation, in which, normalized aggregation
weights T W t

k will be first calculated and applied in the
aggregation function to update the global model. Finally,
the updated global model θt+1 is transmitted to clients
and the next global round begins.

2) Algorithm of AFM3D for Personalized Model: As shown
in Algorithm 2, once the meta-model is trained, the server will
inform each target vehicle and wait for their requests. Then,
the meta-model is transmitted to target vehicles by the server.
After the target vehicle j requests and receives the meta-model
φ, the personalized model φ j is adapted with its own data T j
according to Formula 11.

G. Convergence Analysis of AFM3D

Compared to traditional methods, the meta-learning and
asynchronous mode in AFM3D may affect its convergence.
The recent research [34], [43] has proved the convergence
of AFL even in heterogeneous environments, and has shown
that AFL can run faster than SFL. Such that, the convergence
of AFM (asynchronous federated meta-learning) is further
analyzed by giving three assumptions on loss function Lk .

Assumption 1: Lk is bounded below and its gradient is also
bounded by Bk , i.e., minθkLk(θ) > −∞, ||∇Lk(θ)|| ≤ Bk .

Assumption 2: Lk is Lk-smooth and µk-Lipschitz contin-
uous Hessian, i.e., for ∀θ1, θ2, ||∇Lk(θ2) − ∇Lk(θ1)|| ≤

Lk ||θ2 − θ1||, ||∇
2Lk(θ2)−∇

2Lk(θ1)|| ≤ µk ||θ2 − θ1||.
Assumption 3: The stochastic gradient ∇Lk(x, y; θ) and

Hessian ∇2Lk(x, y; θ) calculated with a data sample (x, y)

have bounded variance, i.e., ||∇Lk(x, y; θ)−∇Lk(θ)|| ≤ σ 2
g ,

||∇
2Lk(x, y; θ)−∇2Lk(θ)|| ≤ σ 2

h .
To ease the expression, Bmax = maxk{Bk}, Lmax =

maxk{Lk}, µmax = maxk{µk},and L ′ = 4Lmax +αµmax Bmax
are used. Furthermore, according to the convergence analysis
in [24], Theorem 1 can be given as:

Theorem 1: After Algorithm 1 runs for R rounds with local
epoch τ , if α ∈ (0, 1

Lmax
] and β ≤ 1

10τ L ′ then we have

1
τ R

R−1∑
t=0

τ−1∑
ϵ=0

E
[∥∥∥∇L (

θ̄ t+1
ϵ

)∥∥∥2
]
≤

4 (L (θ0)− L∗)
βτ R

+O(1)(βL ′
(
1+ βL ′τ(τ − 1)

)
σ 2

F

+ βL ′γ 2
F (

1− p
p(K − 1)

+ βL ′τ(τ − 1))+
α2L2

maxσ
2
g

D
) (12)

where θ̄ t+1
ϵ =

∑Kt
k=1(T W t

k × θ t+1
k,ϵ ) denotes the weighted

model; L∗ represents the optimal function; p =
∑R

t=1 Kt
K×R is

the average participant fraction; σF and γF are parameters
defined in Lemma of [24], which are related to σh , Bmax or
Lmax ; and D represents the batch size.
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Fig. 3. The image examples of the SFD dataset, where c0, c1, c2, c3, c4, c5, c6, c7, c8, and c9 represent safe driving, texting-right, talking on the phone-right,
texting-left, talking on the phone-left, operating the radio, drinking, reaching behind, hair and makeup, and talking to passenger, respectively.

Therefore, theoretically, AFM3D can make the model con-
verge, which is also demonstrated by the evaluation results
presented in the next section.

In summary, AFM3D implements unblocked local meta-
training and global aggregation as well as model adaptation
processes to train a personalized model that can support the
3D task effectively and efficiently. Moreover, a temporally
weighted aggregation method is proposed to tackle the tempo-
ral heterogeneity of local models caused by the asynchronous
mode. Through AFM3D, the overall learning performance can
be improved significantly as revealed in Section IV.

IV. EVALUATION

In this section, the performance of AFM3D is evaluated
and discussed. First, experiment setups are introduced. Second,
the performances of AFL, meta-learning, and AFM3D to train
different models are analyzed and compared to demonstrate the
supremacy and universality of AFM3D in supporting the local
3D task. Third, a comprehensive test on AFM3D performance
influencers is conducted. Finally, the discussion is presented
to provide some insights from the results.

A. Setups

1) Dataset: AFM3D is evaluated based on two widely
used datasets, i.e., the State-Farm-Distracted-driver-detection
dataset (SFD1) and American University in Cairo distracted
driver detection dataset (AUC [44]). SFD contains 22,424
images (640 × 480 pixels) of 26 drivers with 10 classes
as shown in Fig. 3. Similar to SFD, AUC also consists of
10 categories with 12,977 training samples and 4,331 testing
samples (1080× 1920 for each sample). In the preprocessing
step, each image is randomly cropped with the size of 224×
224 according to [2]. SFD is split by driver ID, accordingly
18 drivers are randomly selected as training clients, and the
rest 8 drivers are used as testing clients. Since the driver
ID information is not provided in AUC, 15 training clients

1https://www.kaggle.com/competitions/state-farm-distracted-driver-
detection/data

and 6 testing clients are simulated with heterogeneous local
data based on Dirichlet distribution (the Dirichlet parameter
is 0.5 set according to [45]). For each training client, local
data are divided into support and query sets equally; and for
each testing client, half local data are randomly chosen for
personalization and the other half are utilized for testing. Note
that the data of testing clients are untouched during the training
and only used for model adaptation and evaluation.

As for the communication capability, the transmission time
of each client ranges from 3s to 20s randomly, and the
predefined waiting time for the AFL server to start the global
aggregation is 5s as default (except the initial round takes 10s
to have more local models aggregated), while the participation
rate of source clients in synchronous mode is 0.2.

2) Models: The following six representative models are
trained during the evaluation, including:

• DenseNet121: A dense convolutional network that adopts
shorter connections between layers [46].

• ResNet18: A residual learning framework that can sup-
port deeper networks efficiently [47].

• DeiT: A data-efficient image transformer model that
achieves high-performing based on attention [48].

• ShuffleNetV2: A model that can achieve the tradeoff
between speed and accuracy [49].

• MobileNetV2: A architecture that is suitable for mobile
and resource-constrained environments [50].

• MnasNet: A mobile model that achieves a good trade-off
between accuracy and latency [51].

Note that the model training settings are summarized in
Table IV. As for the inference time and memory requirement
of each model, they are recorded in Table V. The framework
is developed based on Pytorch libraries by using Python
language, and we execute the simulation on a server equipped
with 4 NVIDIA GeForce RTX 3090 GPUs and installed with
Windows 10 Pro and CUDA v11.4. Note that the source code
of the framework can be downloaded from the link.2

2https://github.com/IntelligentSystemsLab/AFM3D
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TABLE IV
THE SUMMARY OF TRAINING SETTINGS

TABLE V
THE SUMMARY OF MODEL INFERENCE TIME

AND MEMORY REQUIREMENT

3) Comparative Methods: The following seven methods are
compared, namely:
• FedAvg: The most recognized synchronous federated

learning method [7].
• TWF: The asynchronous federated learning method with

temporal differences among local models addressed [9].
• MOON: The effective federated learning method with

optimized local training based on the similarity between
model representations [45].

• FedDecorr: The federated learning method with dimen-
sional collapse issue addressed [52] (Since FedDecorr
cannot be used alone, it is adopted with TWF).

• SFMeta: The synchronous federated meta-learning
method with average aggregation [53].

• AFM3D-Aver: The proposed AFM3D framework with
average aggregation.

• AFM3D-TW: The proposed AFM3D framework with
temporally weighted aggregation strategy.

By comparing FL methods (i.e., FedAvg, TWF, MOON, and
FedDecorr) with FM methods (i.e., SFMeta, AFM3D-Aver,
and AFM3D-TW), the effects of integrating meta-learning
with FL can be revealed. Moreover, by comparing two
AFM3D methods with SFMeta, the performance of FM
by using synchronous and asynchronous modes can be
analyzed.

4) Metrics: Five metrics are utilized, namely:
• Test accuracy: The average test accuracy of testing

clients after one step of localization is used.
• Test loss: Cross entropy loss is used, which is the most

recognized loss for classification tasks.
• Recall: It measures the proportion of correctly identified

instances.
• F1 Score (F1): It combines precision and recall to

evaluate the overall performance.
• Training speed: The time when the target accu-

racy is reached. Note that the target accuracies in
SFD for DenseNet121, ResNet18, DeiT, ShuffleNetV2,
MobileNetV2, and MnasNet are 75%, 75%, 65%, 65%,
65%, and 65%, respectively. As for AUC, the target
accuracies are 65%, 65%, 55%, 60%, 55%, and 60%,
respectively.

Specifically, the model accuracy, loss, recall, and F1 are
calculated according to Formula 13,

accuracy =
T P + T N

T P + F P + F N + T N

lossC E = −
1
N

N∑
i=1

M∑
c=1

yiclog(pic)

recall =
T P

T P + F N

F1 = 2×
P × R
P + R

(13)

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively; N
and M are the number of samples and categories, respectively;
yic = 1 if sample i belongs to category c; otherwise, yic = 0;
and pic is the predicted probability; P and R denote Precision
and Recall, respectively.

B. Impact of AFL

By comparing the FL methods in synchronous mode
(FedAvg and MOON) and asynchronous mode (TWF and
FedDecorr), the impact of AFL on the 3D task can be
analyzed. First, as summarized in Table VI and Table VII,
TWF and FedDecorr can improve model performance in terms
of test accuracy, loss, recall, and F1 against FedAvg and
MOON in most cases. Specifically, for the 6 models trained
in 2 datasets, an average boost of 3.98%/5.41%/6.41% in
accuracy/recall/F1 and an average reduction of 3.77% in loss
are observed when comparing the best asynchronous method
with the best synchronous mode. Moreover, AFL methods are
faster than SFL methods according to Fig. 4 and Fig. 5, since
the accuracy curves and loss curves of TWF and FedDecorr
are always superior to the ones of FedAvg and MOON.

The results indicate that asynchronous mode can indeed
boost model performance as well as training speed compared
with synchronous mode, hence is more suitable for the 3D
task in the context of FL.

C. Impact of Meta-Learning

By comparing the two asynchronous methods, i.e., AFL
(TWF and FedDecorr) and AFM (AFM3D-TW), the impact
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TABLE VI
THE SUMMARY OF EVALUATION RESULTS IN SFD DATASET

of meta-learning on the 3D task can be analyzed. First,
as illustrated in Table VI and Table VII, AFM3D-TW can
significantly promote test accuracy, recall, and F1 compared
with the best one of TWF and FedDecorr, specifically, average
improvements of 6.85%, 8.35%, and 7.38% on DenseNet121;
5.81%, 8.32%, and 8.68% on ResNet18; 9.11%, 8.68%, and
5.77% (DeiT); 11.76%, 10.96%, and 9.82% on ShuffleNetV2;
11.61%, 14.19%, and 15.57% on MobileNetV2); 7.49%,
7.56%, and 7.89% on MnasNet are observed, respectively.

Second, according to Table VI and Table VII, the maximum,
minimum, and average reductions of test loss are 24.93%,
11.84%, and 16.65%, respectively, when comparing AFM3D-
TW with the best of TWF and FedDecorr.

Finally, as shown in Table VI and Fig. 5, TWF can not reach
the target accuracies for ResNet18 and MobileNetV2 in SFD,
while AFM3D-TW can always reach the target accuracies
successfully with an average transmission time of 179s for the
6 models, which is 50.91% faster than FedDecorr. According
to the results of AUC listed in Table VII, the average boost in
training speed is 53.78% when comparing AFM3D-TW with
the best of TWF and FedDecorr. It shows that meta-learning

integrated with AFL can indeed achieve fast adaptation and
good performance for the 3D task.

D. Performance of AFM3D

Two variants of AFM3D, namely AFM3D-Aver and
AFM3D-TW (with average and TW aggregation strategies
applied separately), are evaluated. First, according to the
results in Table VI and Table VII, AFM3D-TW can consis-
tently maintain the highest accuracies, recalls, and F1s with
average improvements of 7.49%, 7.29%, and 7.35% against
the best performance among the compared methods. In the
meanwhile, AFM3D-TW spends the shortest time to achieve
the target accuracies with an average acceleration of 56.94%
against the best baseline. Such improvements are also observed
in Fig. 4, in which, the accuracy curves of AFM3D-TW can
surpass other methods and reach the target accuracies more
quickly.

In addition, as reflected in Fig. 5, the loss curves of
AFM3D-TW are better than the ones of FedAvg, TWF,
MOON, FedDecorr, SFMeta, and AFM3D-Aver throughout
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Fig. 4. The accuracy curve of the seven methods in SFD dataset for (A) DenseNet121, (B) ResNet18, (C) DeiT, (D) ShuffleNetV2, (E) MobileNetV2, and
(F) MnsaNet.

Fig. 5. The loss curve of the seven methods in SFD dataset for (A) DenseNet121, (B) ResNet18, (C) DeiT, (D) ShuffleNetV2, (E) MobileNetV2, and (F)
MnsaNet.

the learning process. As a result, AFM3D-TW can achieve the
lowest test loss with an average reduction of 14.80% against
the best baseline according to Table VI and Table VII.

Finally, as for AFM3D-Aver, its performance is unstable
and even can not surpass SFMeta in terms of test accuracy
and loss when training ShuffleNetV2. It, in turn, illustrates
the necessity of using TW in asynchronous mode.

E. Test of Performance Influencers in AFM3D

To further validate the effectiveness and efficiency of
AFM3D, the following five experiments are executed to test

the performance influencers of AFM3D (including meta-
learning methods, temporal weight functions, asynchronous
aggregation strategies, way-shot configurations, and number
of local adaptation steps), by taking the case using SFD to
train ResNet18 and DenseNet121 as an example.

First, two meta-learning methods, namely FOMAML and
Reptile, are compared. As shown in Table VIII, they can both
achieve good performance. However, under the same config-
uration, FOMAML can surpass Reptile, showing its strong
robustness in handling 3D data. Specifically, for ResNet18 and
DenseNet121, the average accuracy improvements are 5.41%
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TABLE VII
THE SUMMARY OF EVALUATION RESULTS IN AUC DATASET

and 5.23%, respectively. Such that, FOMAML is used as the
default meta-learning method in AFM3D.

Second, four different weight functions, namely none/aver
(i.e., AFM3D-Aver as described in Formula 8 with ηk =

1
Kt

),
exp, inv, and log (i.e., three AFM3D-TW variants as described
in Formula 9) are evaluated. According to Table VIII, sig-
nificant accuracy differences between the averagely weighted
aggregation function and the three temporally weighted aggre-
gation functions can be observed. Specifically, under the same
conditions, the best among exp, inv, and log functions can
surpass the aver function by 2.42%. Moreover, the diversities
among the three AFM3D-TW variants are not prominent since
any one of them can be the best in the various configurations.
Considering the exp function holds the most number of best
values, it is chosen as the default function in AFM3D-TW.

Third, three asynchronous aggregation strategies, namely
aggregated every 5s, 10s, and 15s, are created to verify the
robustness of the proposed method in different asynchronous
settings. As summarized in Table VIII, all of them can
achieve satisfactory performance. Specifically, for FOMAML-
based ResNet18, the worst and the best values are 71.08%

(10s) and 78.68% (5s), respectively. As for FOMAML-based
DenseNet121, the accuracies vary from 77.04% (10s) to
79.55% (5s). Since the strategy of 5s can achieve a higher
performance than the rest stratgeis, the default waiting time is
set as 5s in the asynchronous mode.

Fourth, AFM3D is tested under four different way and
shot configurations, i.e., 5-way 1-shot, 5-way 2-shot, 10-way
1-shot, and 10-way 2-shot [25]. As summarized in Table IX,
AFM3D can maintain a steady performance with low variance,
which validates the robustness of the proposed framework in
various few-shot scenarios. Specifically, with the increase of
the number of ways and shots, the accuracies of AFM3D can
be promoted slightly, which may attribute to the limited total
label number and high model complexity.

Finally, the fast adaptation capacity of AFM3D is evaluated.
As shown in Table X, for AFM3D-TW, the accuracy of
the initialized model (0-step) can achieve 54.96% (improved
by 10.83% compared with the best baseline FedDecorr).
After one step of local adaptation, the accuracy can be
lifted to 77.26%. When the personalization continues and
after three steps, the accuracy of AFM3D can reach 84.46%
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TABLE VIII
THE ACCURACY↑ RESULTS OF ABLATION STUDIES

TABLE IX
THE ACCURACY↑ OF DIFFERENT WAY AND SHOT
CONFIGURATIONS TO TRAIN RESNET18 ON SFD

TABLE X
THE ACCURACY↑ IN MODEL ADAPTATION TO TRAIN RESNET18 ON SFD

with an improvement of 2.92% against the best base-
line TWF. The results indicate that AFM3D can indeed
train a meta-model with high generability and also can
rapidly adapt it to new data or tasks for better-personalized
performance.

F. Discussion
According to the above-mentioned holistic evaluation

results, the following insights can be observed:

• The asynchronous mode of FL is more suitable than
its synchronous mode for 3D tasks. Compared with
the synchronous FL method (FedAvg and MOON), the
asynchronous FL method (TWF and FedDecorr) can
generally get a higher accuracy/recall/F1 and a lower loss
within a shorter learning time. A similar result can also be
observed between SFMeta and AFM3D-TW. It indicates
that the asynchronous mode (implemented in AFM3D) is
more efficient and effective than the synchronous mode
in the context of 3D to address the straggler issue;

• Meta-learning integrated with FL can improve the
performance of 3D remarkably. The distinct improve-
ments between AFM3D-TW and TWF/FedDecorr show
that meta-learning (utilized by AFM3D) can help target
vehicles localize the global model quickly and boost
the model performance significantly to address the data
heterogeneity issue in the context of FL and 3D;

• TW is necessary and beneficial for AFM3D. Although
AFM3D-TW behaves well, the model performance of
AFM3D-Aver is variable and is inferior to SFMeta in
some cases. Such observations show that in the asyn-
chronous mode, the temporal heterogeneity needs to be
addressed as the model deterioration may happen, and the
proposed TW strategy in AFM3D is simple but efficient
to tackle such an issue;

• AFM3D-TW can boost the model training perfor-
mance. AFM3D-TW can outperform other methods in
training 3D models with high performance in terms of
learning accuracy, recall, F1, loss, and speed. Moreover,
various models, i.e., DenseNet, ResNet, Transformer,
ShuffleNet, MobileNet, and MnasNet series, experience
performance elevation by using AFM3D-TW, which indi-
cates the supremacy of the proposed framework.

• The performance stability of AFM3D can be
improved. Although the performance of AFM3D is supe-
rior to other methods, a slight performance fluctuation
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during the learning process under different task config-
urations can still be observed, which indicates that the
robustness of AFM3D can be further optimized in the
future.

Due to the limitation in collecting large amount of self-own
data, the standard dataset is used to design distributed training
scenarios that simulate the actual applications of compared
methods for a fair comparison. In the future, we will develop
an open source framework that can deploy and manage fed-
erated learning tasks on smart devices. It is worth noting that
a prototype has been developed and can be downloaded via
the link.3 To conduct the experiment on real vehicles by using
such a framework, a smart device (e.g., android smartphone or
pad) can be mounted at each vehicle and connected to a central
server. By recruiting volunteers, a collaborative and active
user group can be created, based on which, we can run the
experiment privately by using the local data and computation
power of each smart device to train the meta-model and also
deploy it for local usage. Accordingly, the performance of
the proposed method and other compared methods in real
applications can be better evaluated.

V. CONCLUSION

This paper proposes a novel asynchronous federated meta-
learning framework called AFM3D to tackle the data island,
data heterogeneity, and straggler challenges of 3D jointly
in a collaborative and privacy-preserving way. Specifically,
AFM3D 1) adopts FL to bridge private data islands (i.e.,
vehicles containing private data of drivers); 2) applies meta-
learning based on FOMAML to train a meta-model that can
adapt to target clients quickly; 3) employs the asynchronous
mode to alleviate the impact of stragglers; and 4) designs a
temporally weighted strategy to tackle the staleness issue in
asynchronous mode.

As shown by the evaluation results based on the SFD and
AUC datasets, AFM3D can improve test accuracy, recall, F1
score by about 7.61%, 7.44%, and 7.95%, respectively, reduce
test loss by about 9.95%, and boost learning speed by about
50.91% against the best baseline (i.e., FedAvg, TWF, MOON,
FedDecorr or SFMeta). Moreover, as a general framework,
AFM3D can dramatically elevate the training performance
of various AI models (i.e., DenseNet, ResNet, Transformer,
ShuffleNet, MobileNet, and MnasNet series) for 3D.

In the future, first, to further extend the capability of
AFM3D, the usage of AIGC models (such as GPT-4) will be
investigated and integrated with the framework to reduce the
iterative training burden of clients, especially in the context
that the edge computing powers are restricted, and to further
secure the learning process by using generated contents while
gradient attracts exist to sniff the private data of drivers.
Second, since the client-server connection of AFM3D is
vulnerable to the dynamic states of cruising vehicles that may
change over time and place, a layer-based paradigm will be
investigated to make the runtime communication of learning
participants more robust and stable. Third, the aggregation

3https://github.com/IntelligentSystemsLab/generic_and_open_learning_
federator

weights in asynchronous mode can be further optimized by
utilizing heuristic methods, and an aggregation algorithm that
can achieve the trade-off between model performance and
computation complexity will be studied. Finally, AFM3D
will be enhanced to support other similar human distraction
detection problems, e.g., workers at work, etc.
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