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Abstract—The ever-increasing concerns on data security and
user privacy have significantly impacted the current centralized
mechanism of intelligent systems in bridging private data islands
and idle computing resources commonly dispersed at the edge.
To resolve that, a novel distributed learning paradigm, called
Federated Learning (FL), which can learn a global model in a
collaborative and privacy-preserving manner, has been proposed
and widely discussed. Furthermore, to tackle the data hetero-
geneity and model adaptation issues faced by FL, meta-learning
starts to be applied together with FL to rapidly train a global
model with high generalization. However, since federated meta-
learning is still in its infancy to collaborate with participants
in synchronous mode, straggler and over-fitting issues may
impede its application in ubiquitous intelligence, such as smart
health and intelligent transportation. Motivated by this, this
paper proposes a novel asynchronous federated meta-learning
mechanism, called AFMeta, that can measure the staleness of
local models to enhance model aggregation. To the best of our
knowledge, AFMeta is the first work studying the asynchronous
mode in federated meta-learning. We evaluate AFMeta against
state-of-the-art baselines on classification and regression tasks.
The results show that it boosts the model performance by 44.23%
and reduces the learning time by 86.35%.

Index Terms—Federated Learning, Federated Meta-learning,
Asynchronous Federated Meta-learning, Model Aggregation

I. INTRODUCTION

In recent years, the boom of Artificial Intelligence (AI),

especially machine learning, has greatly benefited human

beings to renovate services in various fields, e.g., smart cities

[1], personal healthcare [2], autonomous transportation [3],

etc. Since substantial and available data is a prerequisite for

learning high-performance intelligent models, many AI-based

systems rely on centralized data storage and model training.

However, with the increasing attention on data security and

user privacy, related regulations become ever more rigorous,

making it infeasible and costly to collect and fuse dispersive

and sensitive data into a unified dataset to implement central-

ized training as nowadays widely utilized.

To bridge the data islands caused by data security and

user privacy, a novel distributed learning paradigm, called

Federated Learning (FL) [4], has been proposed and widely

discussed in academic and industrial communities. In general,

a standard FL system consists of a server and multiple clients,

in which, each client trains a local model based on its own
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data and uploads the model parameters to the server for global

model aggregation. Then the server distributes the updated

global update to each client to conduct a new round of local

training. Since privacy-sensitive data are not exposed and

scattered computing resources of clients are utilized, FL has

been applied to many domains, such as mobility behavior

analysis in autonomous transportation systems [5], and remote

health monitoring in smart home [6].

However, since data collected separately by clients are

related to their usage habits and local environments without

information sharing, FL has an intrinsic issue of data het-

erogeneity, such as imbalanced data sizes, missing certain

classes, and non-identical data distributions, impeding its

further applications [7]. If such an issue can not be prop-

erly addressed, the model training process can be unstable

and cost-inefficient, and learned models can be biased with

limited performance [8]. Hence, as one of the solutions, meta-

learning is adopted into FL [9], [10], named federated meta-

learning (FMeta), to rapidly train an initial model with high

generalization to the local task or data in each communication

round.

Even though FMeta has been utilized in several real-

world tasks to harness sensitive and heterogeneous data,

e.g., parking occupancy prediction [11], [12], and wireless

traffic prediction [13], it is still in its infancy, suffering

straggler and over-fitting issues caused by the synchronous

mode [9], [10]. In general, since the synchronous FMeta

(SFMeta) requires all the clients to work under the same

pave/schedule, stragglers with lower computing powers than

other clients may affect the overall learning performance

Besides, dropped parameters by stragglers will cause over-

fitting on local models uploaded by clients with high success

rate. Moreover, such issues encountered by SFMeta can be

enlarged in ubiquitous systems, as clients at the edge have

difficulty maintaining stable communication with the server

due to resource constraints, leading to long learning time and

high failure rate [8].

To tackle the issues in SFMeta, this paper incorporates

the asynchronous mode into FMeta, called AFMeta, and

proposes a temporally weighted mechanism for AFMeta.

As shown in Figure 1, compared to SFMeta, the proposed

AFMeta mechanism can ease the collaboration among clients

with unblocked learning rounds to consistently receive local
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Fig. 1. The comparison between (A) synchronous mode and (B) asynchronous mode of federated meta-learning.

models from clients and update the global model once pre-

defined conditions are satisfied, i.e., the maximum waiting

time is reached. Such that, the influence of stragglers can be

limited. Moreover, since the asynchronous mode may face

temporal heterogeneity in local updates, i.e., the created time

and received time of a model may be different, and the stale

model can cause performance deterioration [14], AFMeta

further implements a temporally weighted aggregation method

to remedy the impact of over-fitting on stale models.

Generally, the main contributions of this paper are summa-

rized as follows:

• To the best of our knowledge, this paper is the first in its

kind to study AFMeta to support ubiquitous intelligence

with straggler and over-fitting issues addressed;

• A temporally weighted aggregation method is proposed

and applied in AFMeta, called AFMeta-TW, to tackle the

temporal heterogeneity issue efficiently and effectively;

• Through a holistic evaluation based on three datasets,

the proposed method can, on average, improve model

performance by 44.23% and shorten learning time by

86.35%, while comparing it with state-of-the-art base-

lines in supporting both regression and classification

tasks.

The remainder of this paper is organized as follows. Section

II summarizes related work about asynchronous FL and

FMeta. AFMeta is presented and evaluated in Section III and

Section IV, respectively. Section V concludes the work and

sketches the future research directions.

II. RELATED WORK

This section discusses related work about asynchronous FL

and FMeta.

A. Asynchronous Federated Learning (AFL)

As the first AFL algorithm, FedAsync [15] can update

the global model immediately once the server receives a

local model. Moreover, FedAsync introduces a mixture model

aggregation method, in which, the updated global model is

a mixture of the previous global model and the received

local model. As the successor, ASO-Fed [16] inherits such

an asynchronous manner to support online learning with local

data accumulated during the training process.

However, such a mixture aggregation method may make the

asynchronous learning process unsteady, and in turn, costly, as

more interactions between the server and clients are required

for the model to converge. Such that, a semi-asynchronous FL

mechanism, called FedSA [17], is proposed, which determines

the number of participants to be aggregated based on the

communication budget to achieve time efficiency. Similar to

FedSA, CSAFL [18] also optimizes the asynchronous mode

by a spectral clustering algorithm dividing clients into groups

according to the similarity of gradient direction and model

latency to improve the overall learning performance.

Despite the timing to update the global model, it is also

critical for AFL to harness the temporal difference among

received local models [19], [20]. To resolve that, Chen et

al. [21] aggregate deep layers and shallow layers of deep

neural networks (DNNs) separately with different frequencies

and assign larger aggregation weights to more recent models.

Liu et al. [14] further explore these ideas by studying the

best frequency of aggregation. Zhang et al. [22] introduce an

asynchronous grouped federated learning framework (PAG-

FL) for IoT to update the global model based on the accuracy

of each local model on a public validation dataset.

B. Federated Meta-learning (FMeta)

Meta-learning, or learning to learn, can encode meta-

knowledge into an initialized model with high generaliza-

tion [23]. As for the meta-model training, meta-learning

algorithms, such as MAML (Mode-Agnostic-Meta-Learning)

[24], [25] and its various variants, e.g., Reptile [26], have

been proposed and widely used for gradient-based models in

classification, regression, and reinforcement learning. More-

over, thanks to the generability of the meta-model, the over-

fitting can be efficiently tackled and model localization or

personalization can be easily conducted to support similar

tasks in new contexts with optimized performance.

While comparing the learning procedure of FL and meta-

learning, several similarities can be observed in local data

processing and model updating steps [27]. Moreover, Jiang

et al. [28] also demonstrate that FL and meta-learning have
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Fig. 2. The overview of AFMeta. The local meta training at the client side and the global aggregation at the server side are executed asynchronously and
iteratively. After the above AFMeta training, the learned model can adapt to new tasks and data quickly with high performance.

mathematical connections. Hence, the integration of FL and

Meta-learning becomes unencumbered [29], and currently,

most studies focus on personalization [30]. However, these

mechanisms may make the model converge slowly in edge

computing. Such that, Yue et al. [31] devise a non-uniform

client selection algorithm along with a resource allocation

scheme to accelerate the learning speed.

Even though AFL and FMeta have been discussed, their

integration in terms of asynchronous federated meta-learning

(AFMeta) is still missing to tackle straggler [9], over-fitting

[10], and data heterogeneity [7] issues in current solutions

with FMeta in synchronous mode. To fill the gap, this

paper introduces AFMeta and proposes a temporally weighted

aggregation strategy to address the above issues efficiently and

effectively.

III. METHODOLOGY

In this section, first, the problem definition is given; second,

the local training process and the global aggregation process

of AFMeta are introduced, respectively; third, the proposed

temporally weighted method (TW) for AFMeta is illustrated;

finally, the overall AFMeta with TW algorithm is summarized.

A. Problem Definition

As shown in Figure 2, we consider an asynchronous

federated meta-learning system with K clients and one server.

Specifically, each client has private local dataset Dk with

labels, i.e., Dk = (Xk, Yk). Moreover, Dk is divided into

support set Dspt
k and query set Dqry

k for meta-learning.

Assume that each client has the abilities of model training

and model uploading, however, the communication abilities

are unstable due to resource constraints, i.e., the local model

transmission time per client varies in each learning round.

Based on the above settings, the goals of this system

are 1) to train an initialized model by managing hetero-

geneous clients asynchronously with low training cost (i.e.,

less learning time), and then, 2) to adopt the meta-model

in classification or regression tasks rapidly with high model

performance (i.e., high accuracy or low error). Accordingly,

the optimization problem is defined in Formula 1,

min
θ

K∑
k=1

Lk(θ,D
qry
k ) & min

C

̂T∑
t=1

ci (1)

where θ stands for the trained model; Lk is the loss function

of client k, e.g., cross-entropy for classification tasks or mean

square error for regression tasks; C is the accumulated train-

ing cost; T̂ is the first round when the desired performance

target is reached; and ci is the cost in the tth round.

In summary, this paper intends to solve a dilemma between

training cost and model performance, which commonly exists

in current studies. Accordingly, a novel mechanism, called

AFMeta with TW, is proposed to have both training time

reduced and model performance improved.

B. Local Meta Training

A client k first receives the newest global model θtk from

the server, and clones it as the local model θk. Then, the

updated model θ′ is computed based on Dspt
k according to

Formula 2,

θ′ = θk − α∇θkLk(θk, D
spt
k ) (2)

where α is the inner learning rate.

We do not care about the performance of θk on Dspt
k ,

instead, the fast adaptability of θk is the objective. Thus, we
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calculate the loss L(θ′, Dqry
k ) and use it to update local model

according to Formula 3,

θk = θk − β∇θL(θ′, Dqry
k ) (3)

where β is the outer learning rate. In this way, the trained

model θk is sensitive to local data changes and can adapt

to new tasks quickly. However, the second-order derivation

is required in Formula 3. To further reduce computation

complexity, we adapt the first-order Model-Agnostic Meta-

Learning [24] and rewrite Formula 3 into an approximate

Formula 4.

θk = θk − β∇θ′L(θ′, Dqry
k ) (4)

When the training is completed, each client k uploads the

updated model θk to the server and waits for the new global

model transmitted by the server to start the next local training.

C. Global Aggregation

In the designed asynchronous mode, the server receives

local models from clients constantly and will execute the

aggregation process when the pre-defined waiting time is

reached. Note that the number of models participating in a

round will change, since the communication capacities of

clients vary over time, and in turn, the number of local models

received by the server may be different per round. Such that,

the aggregation of received local models in the current round

to updating the global model can be conducted according to

Formula 5,

θt+1 =

Kt∑
k=1

(γk × θk) (5)

where Kt is the number of local models received in the tth

round, γk is the aggregation weight of client k, and θt+1

is the updated global model. Note that in canonical FMeta,

γk = 1
Kt

, indicating an average operation.

After the global model is updated, the server will distribute

it to the clients to start local meta training if the stop condition

is not matched (i.e., maximum round number); otherwise,

ignite the model localization for model deployment.

D. Temporally Weighted Aggregation Strategy

As illustrated in Figure 1 (B), in asynchronous mode,

some uploaded local models may be stale in the aggregation

procedure, e.g., the local model of client 3 created in round

2 is to be aggregated in round 3. Intuitively, the latest model

parameters, e.g., the model of client 1 created in round 3

deserve a higher aggregation weight than the stale local model

mentioned above, as it provides the newest information.

However, the average aggregation pattern in SFMeta may

become inefficient to address such a temporal heterogeneity

in asynchronous mode, as it considers local models equally.

Hence, in our study, a temporal weight (TW) is first

proposed as defined in Formula 6,

TW t
k = e−(t−tk) (6)

where TW t
k is the TW of client k in the tth round, e is the

natural logarithm, and tk stands for the round when the local

model of client k is created.

Then, TW is applied in the global aggregation, and accord-

ingly, it transfers Formula 5 into Formula 7,

θt+1 =

Kt∑
k=1

(TW t
k × θk) (7)

where TW t
k = TW t

k/
∑Kt

k=1 TW
t
k is the normalized weight.

Such that, the more recent the local model is, the higher

temporal weight it has in the aggregation.

As shown in Figure 3 (corresponding to the aggregation

process of round 2 in Figure 1 (B)), by computing aggregation

weights TW t
k adaptively, θt+1 can alleviate the effect of stale

models and as a result, get to an optimal point compared with

the average aggregation.

E. Algorithm of AFMeta with TW (AFMeta-TW)

As shown in Algorithm 1, AFMeta consists of two parts,

namely:

• Part 1: in each AFMeta Client. First, AFMeta client

k receives the global model θtk from the server in the

tk round. Second, client k clones θtk as its local model

θk. Third, θk is updated according to Formulas 2 and

4. Finally, after the local meta training, θk and tk are

uploaded to the server for global aggregation.

• Part 2: In the AFMeta Server. First, the AFMeta server

receives local models from clients continuously. Second,

once the predefined waiting time is reached, the server

will start the global aggregation, in which, normalized

aggregation weights TW t
k will be first calculated and

applied in the aggregation function to update the global

model. Finally, the updated global model θt+1 is trans-

mitted to clients and the next global round begins.

Fig. 3. The schematic diagram of temporally weighted aggregation strategy.
Corresponding to the aggregation process of round 2 in Figure 1 (B), θ1 is the
newest model (blue line ) while θ2 and θ4 are latent models (orange lines).
The temporally weighted aggregation result (dark green line) can alleviate
the effect of laten models compared with the average aggregation (light green
line).
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In summary, AFMeta implements unblocked local meta

training and global aggregation processes to remedy the strag-

gler and over-fitting issues. Moreover, a temporally weighted

aggregation method is proposed to tackle the temporal het-

erogeneity of local models. Through AFMeta-TW, the overall

learning performance can be improved significantly as re-

vealed in Section IV-B.

Algorithm 1 AFMeta-TW

PART 1: Executed in each AFMeta client

1: for k ≤ K in parallel do
2: Receiving the global model θtk
3: θk clones from θtk
4: Training local model according to Formulas 2 and 4

5: uploading θk and tk to the server

6: end for

PART 2: Executed in the AFMeta server

1: Thread 1: Receiving θk and tk from clients consistently

2: Thread 2: Aggregating local models regularly

3: while the waiting time is reached do
4: TW t = 0

5: for k ≤ Kt do
6: calculating TW t

k according to Formula 6

7: TW t+ = TW t
k

8: end for
9: TW t

k ← TW t
k/TW

t

10: Aggregating according to Formula 7

11: Transmitting θt+1 to clients

12: Increasing the global round t to t+ 1

13: end while

IV. EVALUATION

This section first describes the experiment setting and then

analyses the results of AFMeta. Finally, a further discussion

based on the observations from the results is presented.

A. Experiment setting

The configuration consists of datasets and models, com-

pared methods, and evaluation metrics, which will be de-

scribed in the following sections, respectively.

1) Datasets and Models: Three datasets are utilized in the

experiment, namely:

• FMNIST: Fashion-MNIST1 (FMNIST) is a standard

image classification dataset consisting of 60,000 training

samples and 10,000 testing samples. Each image has the

size of 28×28×1 with a label from 10 classes (e.g., coat,

sandal, etc.). According to a Non-IID setting introduced

in FedAvg [4], the training and testing data are divided

1https://github.com/zalandoresearch/fashion-mnist

into 50 parts and 10 parts (each part contains 500-

2,000 images) respectively. Moreover, to support meta-

learning, each part is assigned to a training or testing

client to train a CNN (Convolutional Neural Network),

which has two convolution layers (16 and 32 channels,

respectively) followed by a 2×2 max-pooling layer, two

fully connected layers (128 and 256 units, respectively),

and an output layer.

• CIFAR-10: CIFAR-102 is also a standard dataset that

compromises a training set of 50,000 images, a testing

set of 10,000 images, and 10 classes. Different from

FMNIST, each sample is a 32 × 32 × 3 color image.

The data partition setting and CNN model structure are

the same as the ones of FMNIST.

• CHARGE: The charge pile occupancy dataset3 (which is

crawled from the web by our team) contains 33 charging

station data in Shenzhen, China, from 2021.12.09 to

2022.01.07, and the resolution is 5 minutes. Each station

is treated as a client, and the task is to predict its charge

pile occupancy. Furthermore, 28 of 33 stations are used

for training, and the rest are used for testing. Finally,

an RNN (Recurrent Neural Network) is designed to be

trained with a single GRU (Gated Recurrent Unit).

As for the communication capability, the transmission time

of each client ranges from 5s to 35s randomly, and the

predefined waiting time for the server to start the global

aggregation is 8s (besides the initial round will take 20s to

have more local models aggregated). In summary, the default

training settings are summarized in Table I. Note that the

training clients are orchestrated during the training for the

global model, and the testing clients are untouched during

the training and only used for evaluation.

TABLE I
THE SUMMARY OF TRAINING SETTINGS.

Term FMNIST CIFAR-10 CHARGE

Local epoch 1 2 1

Inner learning rate 0.001 0.001 0.003

Outer learning rate 0.001 0.001 0.003

Batch size 48 48 3

Support:Query sets 3:2 3:2 3:2

2) Compared Methods: To better evaluate AFMeta and

AFMeta equipped with the proposed weighted aggregation

strategy, the following four methods are compared:

• FedAvg: The most recognized synchronous federated

learning method [4];

• SFMeta-aver: The synchronous federated meta-learning

method with average aggregation [9];

• AFMeta-aver: The proposed AFMeta mechanism with

average aggregation;

2http://www.cs.toronto.edu/ kriz/cifar.html
3https://github.com/nobody910/charge-station-dataset
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TABLE II
THE SUMMARIZED RESULTS OF BASELINES AND AFMETA

Method
FMNIST CIFAR-10 CHARGE

Accuracy↑ Loss↓ Time↓ (s) Accuracy↑ Loss↓ Time↓ (s) Loss↓ MAE↓ R2 ↑ RMSE↓ Time↓ (s)

FedAvg 82.17% 0.4900 - 51.86% 1.3668 6,479 0.0507 0.1907 -0.0611 0.2235 -

SFMeta-aver 84.97% 0.4144 - 54.36% 1.3232 4,890 0.0153 0.1049 0.5434 0.1219 11,311

AFMeta-aver 87.15%† 0.3742 4,212 67.26% 0.9528 1,084 0.0033 0.0362 0.8798 0.0550 1,820

AFMeta-TW 88.77%∗ 0.3164 3,468 69.41% 0.8915 1,004 0.0032 0.0332 0.8830 0.0541 756

Improv.1‡ 4.47% 23.65% - 27.49% 32.63% 79.47% 79.08% 68.35% 62.53% 55.62% 93.32%

Improv.2§ 1.86% 15.45% 17.66% 3.20% 6.43% 7.38% 3.03% 8.29% 0.36% 1.64% 58.46%

∗ Bold numbers are the best performance.
† Numbers with underlines are the second best values.
‡ Improv.1 shows the percentage improvement of AFMeta-TW over SFMeta-aver.
§ Improv.2 shows the percentage improvement of AFMeta-TW over AFMeta-aver.

Fig. 4. The accuracy curves in (A) FMNIST; and (B) CIFAR-10, and the loss curves in (C) FMNIST; and (D) CIFAR-10.

Fig. 5. The learning curves in CHARGE of (A) loss; (B)MAE; (C) R2; and (D) RMSE.

• AFMeta-TW: The proposed AFMeta mechanism with

temporally weighted aggregation strategy.

By comparing FedAvg with FMeta methods (i.e., SFMeta-

aver, AFMeta-aver, and AFMeta-TW), the effects of integrat-

ing meta-learning with FL can be revealed. Moreover, by

comparing two AFMeta methods with SFMeta-aver, the pros

and cons of FMeta by using synchronous and asynchronous

modes can be analyzed and discussed.

3) Evaluation Metrics: As for the classification tasks per-

formed on FMNIST and CIFAR-10 datasets, three metrics are

utilized, namely:

• Accuracy: The most commonly used measurement;

• Loss: Cross entropy loss is used, which is the most

recognized loss for classification tasks;

• Training speed: The time when the target accuracy is

reached. Note that the target accuracies for FMNIST and

CIFAR-10 are 85% and 50%, respectively.

Specifically, the model accuracy and loss are calculated

according to Formula 8,

accuracy =
TP + TN

TP + FP + FN + TN

lossCE = − 1

N

N∑
i=1

M∑
c=1

yiclog(pic)
(8)

where TP, TN, FP, and FN represent true positives, true

negatives, false positives, and false negatives, respectively; N
and M is the number of samples and categories, respectively;

yic = 1 if sample i belongs to category c; otherwise, yic = 0;

and pic is the predicted probability;

As for the regression task in CHARGE dataset, five metrics

are used, namely:

• Loss: Mean Square Error, which is the loss commonly

used for regression tasks;

• MAE: Mean Absolute Error;

• R2 : Coefficient of Determination;

• RMSE: Root Mean Square Error.
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• Training speed: The time when the target loss is

reached. Note that the target loss for CHARGE is 0.02.

These metrics are computed according to Formula 9,

lossMSE =
1

N

N∑
i=1

(ŷi − yi)
2

MAE =
1

N

N∑
i=1

|ŷi − yi|

R2 = 1−
∑N

i=1 (ŷi − yi)
2

∑N
i=1 (yi − ȳi)

2

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)
2

(9)

where yi and ŷi represent the actual value and the predicted

value, respectively.

B. Performance Evaluation

Table II reports the performance comparing AFMeta with

the baseline methods. From the results, three observations can

be obtained, namely:

• The three federated meta-learning methods outper-
form FedAvg significantly. FedAvg performs the worst

in the three datasets while the three federated meta-

leaning methods have satisfactory performances for clas-

sification and regression tasks. It indicates the strengths

of meta-learning in the fast adaptation.

• AFMeta-aver superiors SFMeta-aver in model per-
formance. In FMNIST, AFMeta-aver can reach an ac-

curacy of 87.15% and a loss of 0.3742, and hence,

the corresponding improvements of 2.57% and 9.70%

are observed compared with SFMeta-aver. Moreover,

the accuracy curve and loss curve of AFMeta-aver can

always be above SFMeta-aver as shown in Figure 4

(A) and Figure 4 (C). As for CIFAR-10, AFMeta-aver

can surprisingly boost the accuracy and reduce the loss

by about 23.73% and 27.99%, respectively. Figure 4

(B) and Figure 4 (D) also prove such promotions. In

the case of CHARGE, the improvements in loss, MAE,

R2, and RMSE are 78.43%, 65.49%, 61.91%, 54.88%,

respectively, and the advantages of asynchronous mode

are also reflected in Figure 5.

• AFMeta-TW achieves the best results compared with
other methods. As summarized in the Improv.1 and

Improv.2 of Table II, AFMeta-TW performs the best on

all metrics of the three datasets with significant improve-

ments against SFMeta-aver and AFMeta-aver. Specifi-

cally, AFMeta-TW can achieve the highest accuracies of

88.77% and 69.41% for FMNIST and CIFAR-10 respec-

tively, and the lowest loss of 0.0032 for CHARGE. By

averaging the values of Improv.1 in Table II, the average

increase in model performance is 44.23% compared with

SFMeta-aver. The learning curves of AFMeta-TW are

also the greatest as illustrated in Figure 4 and Figure 5.

C. Evaluation of Time Efficiency

First, as illustrated in Table II, Figure 4 and Figure 5

(A), both FedAvg and SFMeta train models slowly, and even

can not reach the target accuracy of FMNIST at the end of

learning.

Second, the training speed of AFMeta-aver is much faster

than the two synchronous modes. Specifically, AFMeta-aver

can reach the target accuracy or loss within 4,212, 1,048,

and 1,820 seconds for FMNIST, CIFAR-10, and CHARGE,

respectively; and compared with SFMeta-aver, the accelera-

tions are 77.83% and 83.91% for CIFAR-10 and CHARGE,

respectively. Note that FMNIST is not compared, as SFMeta-

aver can not reach its target accuracy.

Finally, AFMeta-TW is observed to have the fastest train-

ing speed with improvements of about 17.66%, 7.38%, and

58.46% against AFMeta-aver for FMNIST, CIFAR-10, and

CHARGE, respectively. When compared with the baseline

SFMeta-aver, the average boost (average values of Improv.1

in Table II) is 86.35%.

D. Discussion

First, as illustrated in Figure 4 and 5, there are visible

differences in learning curves between AFMeta-TW and

synchronous methods for both classification and regression

tasks, which indicates three prominent advantages of AFMeta-

TW in improving the model performance, shortening the

transmission time, and maintaining a stable learning process.

Second, the three advantages indicate that asynchronous

mode can not only learn a model more quickly than syn-

chronous mode but also train a better model in terms of

accuracy, loss, etc., thus being more suitable to support

ubiquitous systems that require high-performance models fast.

Finally, compared with AFMeta-aver, AFMeta-TW per-

forms better, which proves the efficiency and effectiveness of

the temporally weighted aggregation strategy. Although for

the more complicated task CIFAR-10, the curve of AFMeta-

aver is similar to AFMeta-TW in the first half learning phase

according to Figure 4 (B), in the second half phase, there

still exists a distinct difference, which shows that temporally

weighted aggregation strategy can, indeed, tackle stale models

in various scenarios.

V. CONCLUSION

This paper proposes a novel asynchronous meta-learning

mechanism, called AFMeta, in which, an unblocked aggrega-

tion process is implemented to resolve issues about stragglers

and over-fitting commonly occurring in the synchronous mode

of FMeta. Moreover, to tackle the temporal heterogeneity

issue faced by the asynchronous mode, a temporally weighted

aggregation strategy is introduced to update the global model

adaptively according to the staleness of local models. To the

best of our knowledge, as the first attempt to incorporate

asynchronous mode with federated meta-learning, the pro-

posed AFMeta can, on average, boost model performance

by 44.23%, reduce training time by 86.35%, and maintain
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a more steady learning process, compared to state-of-the-

art baselines to support both classification and regression

tasks. Such a result indicates that the asynchronous mode in

federated meta-learning superiors the synchronous mode in

overall model performance and training efficiency to support

ubiquitous systems.

In the future, the proposed aggregation strategy based

on TW can be further enhanced to learn adaptive weights

automatically by using machine learning methods. Therefore,

a reinforcement learning-based algorithm will be studied to

compute the optimal weights for each client according to

the awards measured by the overall learning improvement

per round (i.e., the accuracy improvement). Moreover, it is

still undiscussed how to reduce communication burdens in

AFMeta clients to impel its actual applications in ubiquitous

IoT (Internet of Things) systems. Such that, a hierarchical

communication topology with layer-wise transmission meth-

ods will be explored for a cost-efficient AFMeta.
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