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Abstract: Parking occupancy prediction (POP) plays a vital role in many parking-related smart
services for better parking management. However, an issue hinders its mass deployment: many
parking facilities cannot collect enough data to feed data-hungry machine learning models. To tackle
the challenges in small-sample POP, we propose an approach named Adaptation and Learning to
Learn (ALL) by adopting the capability of advanced deep learning and federated learning. ALL
integrates two novel ideas: (1) Adaptation: by leveraging the Asynchronous Advantage Actor-Critic
(A3C) reinforcement learning technique, an auto-selector module is implemented, which can group
and select data-scarce parks automatically as supporting sources to enable the knowledge adaptation
in model training; and (2) Learning to learn: by applying federated meta-learning on selected
supporting sources, a meta-learner module is designed, which can train a high-performance local
prediction model in a collaborative and privacy-preserving manner. Results of an evaluation with
42 parking lots in two Chinese cities (Shenzhen and Guangzhou) show that, compared to state-of-the-
art baselines: (1) the auto-selector can reduce the model variance by about 17.8%; (2) the meta-learner
can train a converged model 102× faster; and (3) finally, ALL can boost the forecasting performance
by about 29.8%. Through the integration of advanced machine learning methods, i.e., reinforcement
learning, meta-learning, and federated learning, the proposed approach ALL represents a significant
step forward in solving small-sample issues in parking occupancy prediction.

Keywords: small-sample prediction; federated meta-learning; reinforcement learning; knowledge
transfer; parking occupancy

MSC: 68T05; 68T07; 68T09

1. Introduction

The issue of parking is one of the most important challenges faced by urban transporta-
tion systems, and the negative impacts it causes can seriously degrade the travel experience
of urban residents. A recent investigation indicated that between 9 and 56 percent of traffic
was cruising for parking, and the average search time was about 6.03 min [1]. It can be
said that “cruising for parking” has become a common phenomenon in areas with high
travel demand, which not only increases travel costs for travelers but also causes additional
congestion and emissions [2]. Therefore, optimizing the allocation of parking resources is a
critical and urgent issue. There have been many solutions proposed to address this problem
and parking occupancy prediction (POP) plays a vital role in most of them [3,4], examples
including dynamic parking charges [5,6], parking guidance [7,8], and shared parking [9].

However, these smart parking services and applications are still struggling for mass
deployment due to the lack of a practical approach to small-sample parking occupancy
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prediction (POP), i.e., a small-sample prediction problem [10]. Traditional data-hungry
models are unable to predict with high accuracy and stability in a data-poor scenario,
resulting in insufficient quality of service provided, which seriously undermines users’
trust [11]. Although, with the development of Smart Cities, more and more sensing devices
have been deployed for real-time data collection of all kinds, limited-sensing parking
facilities still account for the majority [12], e.g., on-street and public-free parking lots. As a
result, an effective and efficient POP method capable of addressing the small-sample issue
is required to enable full coverage of smart parking services while reducing the cost of
building sensing infrastructures.

In the current literature, there are three common ways to handle data shortages:
(1) feature enhancement by introducing extra heterogeneous data [8,13,14]; (2) structure
optimization by incorporating spatial-temporal data into deep neural networks [15,16]; and
(3) transfer learning by pre-training the model [17,18]. However, these methods still suffer
from several shortages. Feature enhancement requires a mass of data in a specific area,
which is not always available in real-world scenarios. The training process for a complex
model is time-consuming and laborious. Moreover, domain shift and adaptation remain
challenges in transfer learning.

To overcome these shortages, this paper proposed an approach named ALL which
can provide a lightweight and effective personalized model for the data-poor parking lots
by integrating two novel ideas, i.e., Adaptation and Learning to Learn. As illustrated in
Figure 1, the proposed algorithm consists of three modules, namely: (1) Federation: a
community formed by parking lots, which adopts federated learning framework [19] to
bridge data islands among the clients and support distributed computing; (2) Selector: an
auto-selector used to select appropriate “guiders” automatically for the Learner module,
which is trained by a Reinforcement Learning (RL) method called Asynchronous Advantage
Actor-Critic (A3C) [20] with parking-related features; and (3) Learner: a meta-learner based
on Federated First-order Model-agnostic Meta-learning (FedFOMAML) [21], which utilizes
the aggregated gradients obtained from selected other clients (i.e., “guiders”) to update
the personalized parameters of the target parking lot. In summary, the proposed approach
enables the POP model to support distributed computing, customize knowledge sources
and learn extra knowledge by integrating the three modules (i.e., Federation, Selector, and
Learner).

…

Figure 1. A neat illustration of Adaptation and Learning to Learn (ALL).

In particular, the main contributions of this paper are as follows:

• Through the integration of advanced machine learning methods, i.e., reinforcement
learning, meta-learning, and federated learning, the proposed approach ALL repre-
sents a significant step forward in solving small-sample issues in parking occupancy
prediction;

• Different from existing approaches, ALL avoids the heavy dependence on large vol-
ume data by deploying a knowledge transfer framework. Furthermore, it employs a
meta-learner based on FedFOMAML to improve domain shift via extracting gradients
from multi-domains, and trains an auto-selector by A3C for source filtering to reduce
negative transfer;
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• We test the proposed algorithm on a real-world dataset with 42 parking lots in two
Chinese first-tier cities (Shenzhen and Guangzhou). The results empirically show that:
(1) the auto-selector reduces the model variance by about 17.8%; (2) the meta-learner
trains a converged model 102× faster; (3) finally, ALL obtains the highest scores in all
the four evaluation metrics, namely RMSE 0.0385, MAPE 6.82%, R2 94.49% and RAE
17.23%, and brings an extra performance improvement of nearly 29.8% compared to
the state-of-the-art methods.

The remainder of this paper is structured as follows. In Section 2, a literature review is
presented to summarize the current challenges and solutions in small-sample POP. Then,
Section 3 introduces the proposed approach for small-sample POP, which is evaluated in
Section 4. Finally, Section 5 concludes the work and discusses future research directions.

2. Related Work

While applying a prediction model for small-sample POP, several challenges are
emerging and quite a few solutions are proposed.

2.1. Emerging Challenges

In general, to create an efficient and effective model for small-sample POP, four
challenges are emerging, including:

• Data Shortage: The shortage of local data puts model training processes in a difficult
circumstance that is likely to over-fit and be trapped in local optimum. POP models
need access to additional information to help extrapolate future parking occupancy;

• Knowledge Learning: While introducing more data for model training to alleviate
data shortages, extra distractions would accumulate during learning iterations called
negative learning can deteriorate the performance [22]. Therefore, a knowledge learn-
ing method that can counteract misinformation is required to improve the accuracy of
small-sample POP;

• Knowledge Adaptation: Besides knowledge learning, knowledge adaptation also
remains a challenge. Boosting knowledge adaptation can not only shorten comput-
ing speed and leave considerable computing resources but also stabilize prediction
variance, making POP more practical and applicable [23,24];

• Model Scalability: The utilization pattern may vary between different data richnesses.
POP models have to face many different cases of missing data, for example, a parking
lot without any parking records or with partial but insufficient occupancy. Therefore,
a unified and scalable model is required, which shall manage not only complete-data
cases but also empty-data scenarios effectively and efficiently [25].

2.2. Related Solutions

To tackle the aforementioned challenges, several solutions are proposed. First and
foremost, in order to address data shortages, the main focus of some solutions remains on
data collection and analysis to better interpret and infer the current and future parking
statuses [12,13,26]. Examples include: (1) CoPASample [27] and BATF [28], which utilize
heuristics-based covariance and Bayesian augmented tensor factorization, respectively,
to generate synthetic samples that look close to the original data; and (2) WoT-NNs [14],
which leverages the techniques of Web of Things (WoT) to collect additional information
and incorporate them into neural networks. These data augmentation methods do not
require significant amounts of data and can be generated by intuition or domain knowledge.
However, as a knowledge learning process, the feature extraction of the generated and
introduced heterogeneous data is still challenging for the traditional time-series prediction
models [29]. Further, their generalization to the test data (i.e., knowledge adaptation) is
usually unsatisfactory.

During the last decade, models of deep neural networks have gained huge popularity
in the area of traffic modeling and prediction, and network structure optimization is
emphasized to make full use of spatial and temporal data [15,16,30]. As illustrated by
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MGCN-LSTM [31] which extracts discriminative features from the multi-source data, and
combines the multiple-graph convolutional neural network (MGCN) and the long short-
term memory (LSTM) network for capturing complex spatio-temporal correlations. Even
though these models can handle fused data with high performance, they have a heavy
dependence on the availability of other data sources. Moreover, creating a complex model
may cause the over-consumption of computing resources and the lagging in model updates.

Therefore, methods built on the idea of transferring knowledge between entities
are recently developed, which is a novel way to make the model scalable and less data-
dependent. For instance, FADACS [18] is designed to implement transfer learning based
on a GAN (Generative Adversarial Network). It can generate an adaptive model based on
the shared patterns extracted from the mutual attack between the target and the source.
Hence, FADACS can support POP in parks whose data are insufficient or even “empty” [32].
However, since FADACS transfers all the knowledge from a single source, it may suffer
the over-learning issue to train a biased model. Such discrepancies are substantial in
some other cases. Therefore, drawing on advanced experience in Computer Vision and
Natural Language Processing, meta-learning [33] and its extensions [34,35] developed
for few-shot learning can be deployed in small-sample POP to extract multi-domains
knowledge and enhance knowledge learning. Furthermore, as a foundation to optimize
the knowledge adaptation for transfer methods, knowledge source selection is overlooked
yet [36]. Considering the large amount of parking lots in cities, an auto-selector that can
automatically select suitable knowledge source domains is needed.

In summary, Table 1 shows the evaluation of the reviewed methods by their abilities
in addressing the four challenges. The knowledge transfer methods (i.e., FADACS) can
outperform the typical deep learning models (i.e., HST-GSNs) in knowledge learning and
model scalability. However, the source selection of transfer methods is still inadequate,
which may make them easier to be misled by the negative transfer. To fill the gap, this
paper proposes a novel approach, i.e., ALL, which integrates FedFOMAML and A3C to
pre-train a simple but efficient POP model for data-deficient parking lots.

Table 1. Challenges and representative solutions in small-sample POP ( : Solved; : Partially;
: Not-solved).

Challenges WoT-NNs [14]
(2020)

MGCN-LSTM [31]
(2021)

FADACS [18]
(2021)

ALL
(Proposed)

Data Shortage

Knowledge Learning

Knowledge Adaptation

Model scalability

3. Approach

As illustrated in Figure 2, the proposed approach consists of: (1) the Federation
framework, which is deployed to bridge data islands and support distributed computing
among clients and server; (2) the Learner module, which utilizes FedFOMAML to learn,
integrate, and transfer prior knowledge, so that the target can finally obtain a customized
well-trained network; and (3) the Selector module, which is trained by A3C and produces
an appropriate client-selecting strategy to the Learner. Besides, we apply deep learning
in two parts, i.e., the backbone network using recurrent neural units to extract temporal
features and the auto-selector using multi-layer perception (MLP) to match heterogeneous
features.
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Figure 2. The architecture diagram of the proposed approach.

The definition of the small-sample problem in parking occupancy prediction will first
be described, and each part of the proposed approach will be described in the following
subsections. It is noted that the description of the Selector Module will come after the
Learner Module for easier elaboration.

3.1. Problem Definition

The objective of the prediction problem is to minimize the difference L between the
predicted value yt

p and the actual value yt
a at time t. Typical time-series prediction solutions

learn the patterns presented in the historical data xl and then use them to predict the
future. In contrast, we solve the small-sample issues by introducing additional information
(i.e., historical data xg from other parking lots, local parking-related features fl , global
parking-related features fg). Given the above data as input, the future parking occupancy
in the target parking lot can be calculated by a function presented in (1). In general, the
prediction step can be set to between 30 and 60 min, as the average travel time for an
intercity trip is also in between [37].

min L
(

yt
a, yt

p

)
yt

p = F(xl , xg, fl , fg).
(1)

3.2. Federation Framework

Federated Learning (FL) is an emerging concept in data management that represents
a distributed computation framework for machine learning. In the context of parking
occupancy prediction, collecting massive multi-source data together to train traditional
machine learning models is usually impracticable since: (1) parking records are of great
potential value considering data security and privacy, and both users and managers are
unwilling to share their data without any economic compensation; and (2) it would bring
heavy computing overloads to the server and congestion to communication channels.

To enable collaborations between different parking lots for better occupancy prediction
performance, especially for those with little data, we adopt a horizontal FL framework [19,38],
which is a typical client–server structure to form a parking lots federation and carry out the
distributed computation. This federation can broaden sample spaces among clients (i.e.,
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parking lots) by exchanging knowledge such as gradients and parameters between clients.
Moreover, the distributed computation can dilute computing workloads by implementing
parallel training locally. The Learner module and Selector module are embedded in this
framework.

3.3. Learner Module

Meta-learning is a method proposed in the field of Computer Vision to solve the
“Few-shot Learning” problem, whose essence is to increase the generalization ability
of the learner in multi-task and make the knowledge be quickly adapted to new tasks.
Considering the advantages of solving the small-sample issue, we adopt federated first-
order model-agnostic meta-learning (FedFOMAML) in our Learner module for learning,
integrating, and transferring parking-related knowledge.

The following subsections will describe the first-order model-agnostic meta-learning
(FOMAML) mechanism and its integration with federated learning for small-sample park-
ing occupancy prediction.

3.3.1. FOMAML

First-order Model-agnostic Meta-learning (FOMAML) is simplified based on the
Model-agnostic Meta-learning (MAML) by ignoring the second derivative terms to reduce
the number of gradient steps in finding the best match [33]. Given that M defines the
number of pre-training tasks, the objective function of MAML can be defined by (2), which
is to find a set of initial parameters minimizing the learner loss (i.e., the predicting error in
POP). Thereinto, θ represents the intermediate parameter related to the initial parameter
φ; θm denotes the current parameter in task m; lm(θm) indicates the loss with θm in task m;
and L(φ) is the total after-training loss of initial parameter φ.

min L(φ) =
M

∑
m=1

lm(θm). (2)

The derivative of (2) is the gradient function. To reduce computational complexity,
the second derivative terms can be ignored [33]. It means ∇φlm(θm) can be replaced to
∇θ lm(θm), and the gradient function can be written as (3).

∇φL(φ) =
M

∑
m=1
∇φlm(θm) ≈

M

∑
m=1
∇θ lm(θm), (3)

where∇φL(φ) is the gradient of L(φ) with respect to φ;∇φlm(θm) is the gradient of lm(θm)
with respect to φ; and ∇θ lm(θm) is the gradient of lm(θm) with respect to θ.

3.3.2. FedFOMAML for POP

The integration is implemented through a pre-training process as illustrated in Algorithm 1
and Figure 3, where the data from clients and targets form the Train set and Test set, respec-
tively. Furthermore, these two sets are divided into four separate portions according to the
dataset partition requirements of meta-learning, namely: (1) Train-Support R1, for obtaining
local iterative parameters; (2) Train-Query R2, for getting local gradients; (3) Test-Support
R3, which represents the “small-sample” that target parking lots have for fine-tuning the
personalized network; and (4) Test-Query R4, for evaluating performance.

Expressly, assume there are N parking lots in the federation, and M clients are selected
as guiders. In a particular epoch p, local gradients are obtained from each guider via a local
pre-training based on local data, then the global network parameter (φp) can be updated to
the global parameter of the next epoch (φp+1) through the aggregation of local gradients by
FedFOMAML mechanism [39]. Given that Rm

1 and Rm
2 represent the local Train-Support set
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and Train-Query set, respectively, β denotes learning rate, and θm is the iterative parameter
in pre-training task m, the process can be written as (4).

φp+1 = φp −
β

M

M

∑
m=1
∇θ lm(θm, Rm

2 )

s.t. θm = φp − β∇φlm(φp, Rm
1 ).

(4)

Next, this well-trained network φ can be transferred to the target client (parking lot)
and fine-tuned to a personalized model with Test-Support set R3. Finally, the prediction per-
formance can be evaluated in Test-Query set R4. Obtaining knowledge from all federation
members is a thankless policy that spends enormous time and computing resources, which
means selecting appropriate learning objects can make a big difference to the performance
of the meta-learner.

Algorithm 1 Meta-Learner: FedFOMAML—pseudocode.

Require: batch of pre-training tasks m = 1, ..., M selected from federation
1: initialize φ, learning rate β, pre-training and fine-tuning max-epochs p, p f
2: divide data set into R1, R2, R3, R4
3: while not done do
4: for i = 1, ..., p do
5: for each pre-training task m do
6: compute gm

1 = ∇φlm(φ, Rm
1 )

7: update φ to θm with gm
1

8: obtain gm
2 = ∇θ lm(θm, Rm

2 )
9: end for

10: update φ = φ− β ∑M
m=1 gm

2
11: end for
12: initiate personalized net φ′ = φ
13: for j = 1, ..., p f do
14: update φ′ with R3
15: end for
16: end while
17: evaluate predicting performance in R4

Adam

Compute
Gradients

Parking
Lot 1

...

...

( 1 … . . . )

Compute
Gradients

...

BGD

Train-Support Set Train-Query Set

+10

init

…

Selected 
Guiders

Global
Network

Gradients ... Server

... ...

... ...

Parking
Lot 

Parking
Lot 

Parking
Lot 1

Parking
Lot 

Parking
Lot 

Figure 3. FedFOMAML pre-training framework in parking occupancy prediction tasks.
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3.4. Selector Module

The major challenge of the client selection process is the overlarge space for states
and actions. Given N parking lots and M “guiders”, the selector faces N states and CM

N
possible actions. Although the value-based RL methods using a single critic network (e.g.,
Deep Q Networks [40]) take the advantages of efficient computation [41], the actor-critic
setup is more suitable for the scenarios with large action spaces. Therefore, we employ
asynchronous advantage actor-critic (A3C) [20] that uses asynchronous gradient descent to
optimize deep neural network controllers, significantly shorten the RL training time, and
make the learning process stable. The RL training process is demonstrated in Figure 4.

.

… …

… …

Figure 4. Selector training process based on asynchronous advantage actor-critic (A3C) framework.

Selector Training

The Selector Module consists of a Selector (3-layer MLP) and a Critic (2-layer MLP),
whose structures are shown in Section 4. The Selector outputs actions (i.e., “guiders”
selection) according to the present state modeled with parking-related features, and the
Critic is used to evaluate the selection strategies. The process of Selector training using the
A3C framework is presented in Algorithm 2. Firstly, we adopt an off-policy strategy for
sampling [42] and obtain the rewards through a reward function presented in (5).

r(a, Si) = λ÷ F(a, Si). (5)

The reward r is straightforwardly measured by the testing loss of the Learner module
given the specific state Si and actions a. We set a positive constant λ empirically as a
threshold value.

After sampling, the coordinator collects all states, actions, and rewards into a buffer.
In the case of parking occupancy prediction (POP), the number of training states is equal to
the number of clients in the federation, and there will be CM

N actions given N states and M
parking lots to select. Each client utilizes Advantage Actor-Critic (A2C) to calculate local
gradients of Selector and Critic, respectively, then update the global network’s parameters
with the aggregation of batch local gradients.
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Algorithm 2 Auto-Selector Training: A3C—pseudocode.

Require: the Learner module, parking-related features
1: assume that the numbers of clients and selected guiders are N and M, then the amount

of states and actions are N and T = CM
N respectively

2: initialize global Selector and Critic net πa and πc; model state s with features
3: for episode do
4: sampling distribution π′ = π
5: compute rewards
6: sample local states, actions and rewards to the Buffer
7: distribute samples (s, a, r) to corresponding member
8: for each member m do
9: freeze πa

10: dπc ← 0
11: compute Vsm

π

12: obtain dπm
c by regression

13: end for
14: update πc, release πa
15: for each member m do
16: freeze πc
17: dπa ← 0
18: obtain dπm

a by advantage function
19: end for
20: update πa, release πc
21: end for

• Critic Updating

A value-based method is employed for the Critic updating. The estimated Value Vs
π

indicates the approximate expectation of rewards in a particular state s, which is defined
by (6):

Vs
π = Eπ(r(ã, s)) =

1
T

T

∑
t=1

r(at, s)
ρπ(at|s)
ρπ′(at|s)

, (6)

where Eπ(r(ã, ŝ)) represents the expected value of the reward r for all actions ã in a specific
state ŝ using Selector π; Vs

π indicates how good the Selector could do; T is the number of
actions in one state; r(at, ŝ) denotes the reward of action at in the state ŝ; ρπ(at|ŝ) represents
the probability of that the Selector takes action at using parameter π; and ρπ′(at|ŝ) indicates
the global sampling distribution that could be omitted if it were a uniform distribution.

We calculate the Critic gradient of state sm through square error (SE) regression
between the Critic’s output Vsm

critic and the observed value Vsm
π . Under the federation frame-

work, we update the global Critic net πc using the aggregated gradients as Equation (7).

π′c = πc − β
M

∑
m=1
∇πc(V

sm
π −Vsm

critic)
2. (7)

• Selector Updating

According to the idea of policy-based advantage function [20], when the reward of an
action is greater than the valuation of Critic Vcritic, its probability goes up, otherwise, goes
down. Then, the gradient of Actor (i.e., Selector) ∇R̄s

π , can be written as (8).

∇R̄ŝ
π =

1
T

T

∑
t=1

(r(at, ŝ)−Vcritc)∇ßa log æß(at|ŝ) . (8)
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Similar to the updating process of Critic net, that of Selector net πa also can leverage
the aggregated local gradients as illustrated in Equation (9).

π′a = πa − β
M

∑
m=1
∇R̄sm

π . (9)

Finally, after iterative updating, the Selector would be able to find a “best” policy that
selects a certain number of good “guiders” for the Learner module.

4. Performance Evaluation

In this section, the proposed method will be tested together with other state-of-the-art
POP methods based on the same dataset and evaluation metrics. Moreover, the results will
be analyzed to demonstrate the improvements achieved.

4.1. Evaluation Preparation

To conduct a fair comparison, we adopt the data from reliable sources, introduce
several representative approaches as baselines, and set reasonable experimental conditions.

4.1.1. Data Declaration

A dataset with a minimum resolution of five minutes was collected from 42 parking
lots located in two Chinese first-tier cities, Shenzhen and Guangzhou, from 1 to 30 June 2018.
It is of high quality, excludes the impact of COVID-19 (earlier than 2019), and is capable of
evaluation purposes. As shown by Figure 5, 30 car parks in Guangzhou (P1–P30) are set
as Train tasks, while 12 car parks in Shenzhen (Target1–Target12) are Target (Test) tasks.
Further, these parks are classified into six types according to the land use attributes of the
area in which they are located [43]: Commercial, Hospital, Office, Residential, Recreational,
and Tourism. Another important parking-related feature is the density of points of interest
(POI). We calculate the density of POI using a kernel function [44] presented in (10).

η(x) =
1
U

U

∑
u=1

1
h

K(
x− xu

h
)

when K(x) ≥ 0,
∫

K(x)dx = 1 ,∫
xK(x)dx = 0 ,

∫
x2K(x)dx > 0 ,

(10)

where η(x) is the density function of POI samples x, K(x) is the kernel function adopting
Gaussian distribution, h bandwidth represents the maximum acceptable walking distance
in cities, and U is the total number of POI samples. Considering that the influences of
different POIs are challenging to measure in the real world, we propose to simplify the
calculation by setting all weights to 1, as the overestimation and underestimation errors
can be partially offset in calculation.

Furthermore, the kernel density of POI and the type of parking lots are utilized to
build the input of the Selector module (i.e., the “State” of reinforcement learning). The
“State” matrix can be formed in the way presented in (11):

S2×N
i =

[
η1×N

i , τ1×N
i

]
s.t. η1×N

i = λ− (ηi −~η)2

τ1×N
i = ~τi ∗ Γ,

(11)

where Si represents the state matrix of federation member i, who has a dimension of 2× N,
η1×N

i and τ1×N
i indicate the density and type feature vectors of state respectively, ηi and

~τi are the density scalar and type code of member i, ~η and Γ represents the density vector
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and type matrix of the federation, N is the total number of members, λ denotes a positive
constant, and ∗ denotes the Hadamard product.

Figure 5. Spatial and category information of parking lots, (a) Train tasks; (b) Target tasks.

To reach the requirement of meta-learning, the Train and Target tasks are further
divided into four parts by time. Each task in the Train set is sliced into two parts, Train-
Support set (Day 1–18) and Train-Query set (Day 19–24), for obtaining meta gradients.
Similarly, each task in the Test set is sliced into two parts, Test-Support set and Test-Query
set. The Test-Query set is from 25 to 30 June and is used for performance evaluation. As for
the Test-Support set, to test the proposed method with different target sample sizes, five
different situations are designed as illustrated in Table 2: complete-data (Day 1–24, 24d),
partial-data (Day 18–24, 6d), small-data (Day 21–24, 3d), few-data (Day 24, 1d), empty-data
(null).

Table 2. Five categories of data richness for Test-Support set.

Data Richness Complete Partial Small Few Empty

Date (June) 1–24 19–24 22–24 24 –
Number of days 24 6 3 1 0
Proportion (%) 100 25 12.5 4.2 0

4.1.2. Evaluation Metrics

Four common evaluation metrics are chosen to evaluate the compared models, namely
Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), Relative
Absolute Error (RAE), and Coefficient of Determination (R2), which can be calculated
as (12).

MAPE =
1
N

N

∑
i=1

|ŷi − yi|
yi

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2

RAE =
∑N

i=1|ŷi − yi|
∑N

i=1|ȳi − yi|

R2 = 1− ∑N
i=1 (ŷi − yi)

2

∑N
i=1 (yi − ȳi)

2 ,

(12)

where yi and ŷi represent the actual value and the predicted value at time i; and N is the
total number of samples. Moreover, each prediction task will run ten times separately, and
the averaged result is used as the final performance indicator to reduce random error.



Mathematics 2022, 10, 2039 12 of 19

4.1.3. Baselines and Competitive Approaches

In order to evaluate the effectiveness of the proposed method, besides several typical
prediction models, we select two knowledge transfer methods as baselines. Specifically, the
typical prediction models include four neural networks (NNs) and one statistical model.

• Fully Connected Neural Network (FCNN): a network widely used for function approx-
imation and general regression problems, but it cannot distinguish between temporal
and spatial features;

• Long Short-Term Memory (LSTM) [45]: a recurrent neural network that is widely used
in many time series prediction tasks due to its excellent temporal feature extraction
capabilities;

• Gated Recurrent Unit (GRU) [46]: a recurrent neural network with a simplified gate
structure and the advantage of fast computation;

• Bi-directional Long Short-Term Memory (BiLSTM) [47]: a combination of forward and
backward LSTM, often used for modeling contextual information in natural language
processing tasks;

• Auto-regressive Integrated Moving Average (ARIMA) [48]: a classical statistical model
for time series forecasting, which requires the series or its differentials must be stable.

The knowledge transfer approaches include two recently developed methods and two
proposed methods:

• Transfer-LSTM [49]: a traffic flow prediction method using traditional transfer learning,
which can also be used for occupancy prediction as it is also time series data;

• FADACS [18], a recently developed approach for parking occupancy prediction, which
implements domain adaptation using adversarial learning mechanisms;

• ALL: the proposed integration of the meta-learner and auto-selector employs LSTM
and GRU as a backbone network, and the models are named ALL-LSTM and ALL-
GRU, respectively;

• FML: the meta-learner uses LSTM and GRU as the backbone network like ALL. Unlike
ALL, its “guiders” selection strategy is “random”, as a comparison to highlight the
effectiveness of our selector module.

In Table 3, the architecture of the proposed method is described. Relu [50] is the acti-
vation function that makes gradient descent and backpropagation more efficient; Res [51]
denotes the residual connection, which is used to preserve the properties of the upper
network layers and make the network easier to be updated. Softmax [52] is a normalized
exponential function used to transform the output of the selector into a probability for each
action; Dense refers to the linear neural network layer; Flatten refers to the operation of
flattening a matrix into a one-dimensional vector.

Table 3. Architecture of the proposed approach.

ALL Layer Parameters

Feature Extractor
LSTM

input = 1 channels
hidden = 8 channels

Dense
output = 1 channels
Sequence length = 6

Selector (Actor)

Dense (30, 256)
Relu

Dense (256, 256)
Res

Dense (256, 4060)
Softmax

Critic

Dense (5, 1)
Flatten
Dense (30, 1)
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In Table 4, the running configurations of all comparison methods are shown, where CE
stands for cross-entropy and is the loss function for selector training. All neural networks
use a two-layer structure, with an encoder layer (e.g., BiLSTM, LSTM, GRU) for extracting
time-series features and a decoder layer (FCNN) for outputting predicted values. Besides,
the source selection strategies of the knowledge transfer methods are pretty different, and
the ‘knowledge’ extracted by these methods is also different. Transfer-LSTM obtains the
network structure and parameters, while FADACS generates a new network based on the
shared patterns of the source and target domains. Unlike them, our proposed learner learns
gradients from multiple domains to update a bespoke model, which makes the knowledge
more insightful and the model more adaptive.

Table 4. Running configurations.

Model Param Value Comment

*

input (256, 6, 1) (batch, sequence length, feature)
output (256, 1) (batch, feature)

Structure Encoder-Decoder two layer network structure
Learning Rate 0.02 For all updating processes
Max Epochs (200, 400, 4000) (fine-tuning, pre-training, Selector training)
Optimizer (Adam, BGD, Adam) (fine-tuning, pre-training, Selector training)

Loss Function (MSE, MSE, CE) (fine-tuning, pre-training, Selector training)

Knowledge Transfer

Selection Strategy (random | type) (Transfer-LSTM, FML | FADACS, ALL)
Source Number (1 | 3) (Transfer-LSTM, FADACS | FML, ALL)

(N, M, T) (30, 3, 4060) the number of states, guiders, and actions

ARIMA (p, d, q) (2, 1, 1) implemented on Statsmodels

* includes ALL, FML, FADACS, Transfer-LSTM, NNs.

4.1.4. Running Environment

All the experiments are conducted on a Windows workstation with four NVIDIA
GeForce RTX 3090 GPU, an Intel Gold 5218R Two-Core Processor CPU, and 512 G RAM.

It is worth noting that, for reproductivity, the dataset and code used by this paper are
shared in Github, and are downloadable from the link (https://github.com/Quhaoh233
/ALL (accessed on 7 May 2022)).

4.2. Evaluation Results and Discussions

The performance of evaluated methods is analyzed in three aspects, namely: (1) the
forecasting error to illustrate how well and scalable the model is to predict the future in
different data volumes; (2) the convergence speed to demonstrate how fast the model is
to be stabilized; and (3) the variance of errors to show how stable the model is to handle
contexts with various parking lots and data volumes. Noted that the proposed approach
ALL is a pre-training framework to empower the learning model to handle small-sample
prediction issues, which is not in conflict with data enhancement. In this evaluation,
we exclude the process of data enhancement to conduct a fair comparison between the
compared models with and without knowledge transfer.

4.2.1. Forecasting Error

As shown in Table 5, the evaluation metrics of compared models in different data bulks
(empty, few, small, partial, and complete data) are summarized. From an overall point of
view, we can see the proposed approach reduces the prediction errors significantly with
the highest scores in all the four evaluation metrics, namely RMSE 0.0385, MAPE 6.82%,
R2 94.49%, and RAE 17.23%. Precisely, in RMSE, MAPE, R2 and RAE, (1) ALL improves
accuracy over LSTM by 30.2%, 25.1%, 30.3%, 21.2%; (2) ALL outperforms FADACS with
extra accuracy improvement of 22.4%, 18.1%, 28.0%, 15.7%; and (3) On the basis of FML-
LSTM, the Selector module brings 4.5%, 3.7%, 23.0%, 3.5% extra improvement.

https://github.com/Quhaoh233/ALL
https://github.com/Quhaoh233/ALL
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Table 5. The list of evaluation metrics of compared models in different data bulks.

Data Bulk Empty Few Small

Metric (10−2) RMSE MAPE R2 RAE RMSE MAPE R2 RAE RMSE MAPE R2 RAE

ALL-LSTM 5.40 10.34 89.81 24.08 4.52 8.18 93.25 19.94 3.78 6.32 94.75 16.55
ALL-GRU 5.56 9.65 89.09 25.23 5.13 8.99 92.26 21.70 3.83 6.48 94.49 16.96

FML-LSTM 5.61 10.24 90.71 22.82 5.53 9.14 91.52 22.22 4.74 7.70 92.60 19.81
FML-GRU 6.04 11.46 88.69 24.75 5.53 9.15 91.16 22.54 4.91 8.00 92.75 19.94
FADACS 7.72 16.32 76.81 35.63 5.76 9.66 90.79 23.22 5.00 8.11 92.49 20.12

Transfer-LSTM 9.68 23.75 68.25 40.36 6.38 10.92 88.56 26.25 4.96 8.29 92.17 21.12
LSTM — — — — 7.49 13.67 86.71 27.56 5.67 8.87 91.96 21.86

BiLSTM — — — — 6.77 11.72 86.01 29.23 5.84 9.41 90.13 23.77
GRU — — — — 9.01 15.36 69.47 39.28 5.30 9.34 87.93 26.09

FCNN — — — — 9.38 18.04 59.37 44.54 5.99 10.19 85.29 27.58
ARIMA — — — — — — — — 50.99 92.27 −1223.7 318.8

Data Bulk Partial Complete Average

Metric (10−2) RMSE MAPE R2 RAE RMSE MAPE R2 RAE RMSE MAPE R2 RAE

ALL-LSTM 3.56 6.35 94.96 16.18 3.55 6.41 94.99 16.24 3.85 6.82 94.49 17.23
ALL-GRU 3.61 6.45 94.77 16.45 3.55 6.41 94.95 16.32 4.03 7.08 94.12 17.86

FML-LSTM 4.41 7.41 93.24 18.96 4.05 6.90 93.92 17.62 4.68 7.79 92.82 19.65
FML-GRU 4.49 7.56 92.96 19.45 4.52 7.63 92.81 19.50 4.86 8.09 92.42 20.36
FADACS 4.62 7.82 93.01 19.41 4.55 7.75 93.11 19.01 4.98 8.33 92.35 20.44

Transfer-LSTM 5.49 8.05 92.87 20.14 5.51 7.78 92.85 19.95 5.59 8.76 91.61 21.86
LSTM 5.04 7.40 93.27 19.53 4.38 6.51 94.52 16.50 5.64 9.11 91.61 21.36

BiLSTM 5.25 7.82 93.43 19.75 5.19 8.60 91.77 21.30 5.76 9.39 90.34 23.51
GRU 5.90 10.00 88.35 25.61 5.78 9.68 88.69 24.73 6.50 11.10 83.61 28.93

FCNN 5.51 9.43 87.25 25.59 5.55 9.30 86.45 25.73 6.61 11.74 79.59 30.86
ARIMA 4.62 7.03 93.75 17.69 4.63 7.02 93.74 17.70 20.08 35.44 −345.4 118.1

Notes: “—” indicates that the result is not available; The “Average” results exclude the “Empty” cases.

In general, the methods with knowledge transfer are superior to those without due to
the more information they can obtain. However, Transfer-LSTM is inferior to its backbone
LSTM in the Partial and Full data cases, which reveals that the performance can be held
back by the distraction from the negative transfer.

Focusing on the few-data cases, we can see that the statistical model ARIMA cannot
fit the curve, which indicates the parking occupancy variation in few-data cases is unstable.
These unstable samples bring the challenges of local adaptation, especially over-fitting. In
this context, the deep learning methods perform poorly, e.g., GRU and FCNN have more
than 30% residuals in the R2 score. By contrast, the R2 scores of the methods that utilize
transfer techniques to learn prior knowledge remain over 90%.

Furthermore, to accentuate the difference in knowledge transfer methods, they are
deployed on the empty-data cases. The results show that ALL can provide a reliable future
parking occupancy prediction (over 88% in R2 score) even without any local fine-tuning.
On the contrary, FADACS and Transfer-LSTM only get 76.81% and 68.25%, which still have
lapses of knowledge adaptation.

4.2.2. Convergence Profile

The convergence profile of the ALL-LSTM is evaluated against the LSTM as shown in
Figure 6, where the left vertical axis is for the orange line (i.e., ALL-LSTM) and the right
one is for the blue line (i.e., LSTM). These experiments are conducted in Target1–Target4
and the few-data scenarios. The figures show that the LSTM model deployed with the ALL
framework has a better prospect for loss decline than the not-deployed model. Further-
more, the errors at the beginning of the curves for ALL-LSTM are smaller than that at the
100th iteration of LSTM, indicating the advantage of ALL for knowledge extraction and
propagation. As an illustrative example, although their RMSE curves in Target1 perform
similar shapes, the curve of ALL-LSTM is an order of magnitude less than that of LSTM.
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The former starts below 0.04 and ends at 0.032, while the latter starts over 0.5 and ends at
0.1. All these results suggest that employing the Learner module, which efficiently learns
valuable prior knowledge through a pre-training process, can significantly improve local
adaptation and convergence speed than the non-knowledge-transfer model.

Figure 6. Convergence profiles in Targets 1–4 and few-data scenarios. The left vertical axis is for
ALL-LSTM, when the right is for LSTM.

4.2.3. Error Variation

To emphasize the improvement brought by the Selector module, we give an illustration
in Figure 7, where the orange, green and red shapes represent the maximum, average, and
minimum MAPE of the methods in the five data richness cases. The figure shows that
in all five cases, the LSTM model using the ALL framework yields smaller “boxes” than
the model using FML and Transfer. To be precise, the average variance for ALL-LSTM
in MAPE is 9.85 × 10−4, which is about 17.8% less than the 16.11 × 10−4 for FML. The
above results demonstrate that the Selector module can stabilize prediction, improving the
application significance of the proposed approach in real-world scenarios.

In summary, the combination of FedFOMAML in model pretraining and A3C in
source selection is efficient and effective. As shown by the evaluation results, the proposed
approach has the following advantages: (1) high accuracy and scalability, scoring highest
in all five data groups and four evaluation metrics, with a significant reduction of 29.8%
in prediction error; (2) fast adaptation, with model adaptation and convergence speed
substantially improved by 102 times over the model without ALL; and (3) good stability,
reducing the variance of the predictions by 17.8%.
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Figure 7. Result variance comparison among ALL-LSTM, FML-LSTM, Transfer-LSTM per data size.

5. Conclusions and Future Works

Parking occupancy prediction plays an important role in many real-time manage-
ment scenarios, such as directing car drivers to available parking lots, adjusting parking
charges, and sharing parking spaces, which can significantly improve the ”smartness”
of intelligent transportation systems (ITS). However, an emerging bottleneck is the poor
predictive performance in data-poor parking areas, which hinders the mass acceptance
of intelligent parking services associated with POP. Hence, this paper proposes a knowl-
edge transfer approach to support small-sample parking occupancy prediction, which
integrates two novel ideas: (1) adaptation: by leveraging the Asynchronous Advantage
Actor-Critic (A3C) reinforcement learning technique, an auto-selector module is imple-
mented, which can group and select data-scarce parks automatically as supporting sources
to enable the knowledge adaptation in model training; and (2) learning to learn: by ap-
plying federated meta-learning on selected supporting sources, a meta-learner module is
designed, which can train a high-performance local prediction model in a collaborative and
privacy-preserving manner.

As the evaluation results show, the proposed method outperforms the compared
methods in three respects, namely: (1) by using the ALL framework, the prediction error
can be significantly reduced by approximately 29.8%; (2) by applying FedFOMAML during
the model pre-training process, the convergence and adaptation speed of the model can be
improved so that the loss curves of LSTM models with and without ALL maintain a 102

difference; and (3) by applying the Selector module, the variance can be mediated, resulting
in a 17.8% improvement in the stability of the model when dealing with different data
volumes.

Future work can be conducted in three directions:

(1) To optimize source selection: In the proposed approach, data augmentation and
structure optimization are two effective ways to improve source selection, which
facilitates the ‘purification’ of knowledge [53]. Firstly, the structure of Selector will be
replaced by other state-of-the-art structures. Secondly, a larger dataset will be used to
train the Selector network and provide a more general decision strategy;

(2) To consider data security: The knowledge transfer process incurs huge communication
overhead, security issues, or privacy concerns, which is not practical for wireless
networks and end-users [54]. Our federated learning framework will be revised to
provide effective personalized models for each participant under device heterogeneity
while ensuring differential privacy of their data solutions;
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(3) To extend ALL’s applications: The ideas of adaptation and learning to learn can be
applied not only to solve the small sample problem of parking occupancy prediction
but also to handle other time series prediction tasks with insufficient data. We will
apply our approach to other scenarios where up-to-date data are available, such as
traffic flow forecasting.
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