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Abstract—With the growing concerns on datasecurity and user
privacy, a decentralized mechanism is implemented for federated
data mining (FDM), which can bridge data silos and collaborate
diverse devices in ubiquitous IoT (Internet of Things) systems and
services to extract global and shareable knowledge, i.e., encoded in
deep neural networks (DDNs). Moreover, compared with FDM in
synchronous mode, asynchronous FDM (AFDM) is more suitable
to accommodate devices with diversified computing resources and
distinguishable working statuses. However, as AFDM is still in its
infancy, how to harness heterogeneous resources and biased knowl-
edge of learning participants within the asynchronous context re-
mains to be addressed. Such that, this paper proposes an adaptive
and integrated mechanism, named AiFed, in which, a layer-wise
optimization of AFDM is implemented based on the integration of
two dedicated strategies, i.e., an adaptive local model uploading
strategy (ALMU), and an adaptive global model aggregation strat-
egy (AGMA). As shown by the evaluation results, AiFed can outper-
form five state-of-the-art methods to reduce communication costs
by about 61.76% and 56.88%, improve learning accuracy by about
1.66% and 3.05%, and accelerate learning speed by about 22.16%
and 37.81% under IID (independent and identically distributed)
and Non-IID settings of four standard datasets, respectively.

Index Terms—Asynchronous federated data mining, layer-wise
model aggregation, adaptive local model uploading, adaptive global
model aggregation.

I. INTRODUCTION

THE ever-increasing level of intelligence and automation
in modern systems and services is driven by insightful

and decisive knowledge mined from the vast amounts of data
sensed by various devices (e.g., personal smartphones, assistive
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robotics, unmanned vehicles, etc.) [1], [2]. Therefore, how to
manage related devices, and in turn, process the data they collect
efficiently and effectively becomes crucial in data mining. As
enabled by the prevailing Internet of Things (IoT), layered and
centralized mechanisms are widely discussed to implement a
collaborative cluster, through which, data-hungry models rep-
resenting comprehensive knowledge shared among users can
be trained in central servers and deployed onto edge devices
to not only renovate service portfolio but also improve service
quality [3], [4].

However, the growing concerns about data security and user
privacy may restrict the connectivity of centralized IoT in shar-
ing sensitive data. Such that, more isolated and fragmented
data islands are forming at the edge and make centralized
data mining tasks unperformable due to the lack of critical
information. Moreover, the potential power of layered IoT may
not be fully unleashed in centralized solutions as well, since
edge devices equipped with plentiful sensing and computing
capabilities may sit idle after the collection and transmission of
local data, leading to a waste of resources [5], [6]. When facing
the intrinsic pitfalls in centralized data mining, a novel approach,
named federated data mining (FDM), is in the spotlight to train
data-driven models, i.e., deep neural networks (DNNs) [7], [8],
collaboratively, and foster the exchange of inter-knowledge in
a privacy-preserving manner. As shown in Fig. 1, instead of
sharing the raw data, each FDM client can learn and upload
individual knowledge separately and simultaneously [9]. Af-
ter the receival of individual knowledge, the FDM server can
aggregate them for global knowledge, and then, distribute it
to the clients through the network. Through such an iterative
process, complete and precise global knowledge, i.e., encoded
in a DNN [10], can be mined and shared to the edges for actual
usage.

Due to its advantages in harnessing various computing re-
sources and discovering private knowledge distributed at the
edge, FDM has been widely adopted and applied to support
related tasks in various data-sensitive domains [11], e.g., user
behavior detection for smart home [12], emoji and word predic-
tion for smart keyboard [13], credit risk management for smart
finance [14], patient similarity analysis for smart healthcare [15],
etc. While considering the mode to orchestrate clients, FDM can
be categorized into synchronous FDM (SFDM), whose clients
will share the same working pace, and asynchronous FDM
(AFDM), whose clients can work separately and simultaneously.
Regarding the scalability and elasticity in managing multi-end
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Fig. 1. Schematic diagram of FDM.

resources, AFDM becomes superior to SFDM in supporting
ubiquitous IoT systems and services, as it can avoid the impacts
of stragglers, which may become the performance bottleneck of
FDM with learning accuracy decreased, and learning cost and
time increased.

However, AFDM causes two kinds of heterogeneity at the
client and the server, respectively. Specifically, the heterogeneity
at the client is represented by the imbalanced and distinguishable
local resources, i.e., Non-IID (non-independent and identically
distributed) data, and rated communication capabilities, e.g.,
4G to 6G [16]. It can significantly increase the complexity of
learning an unbiased knowledge/model, e.g., in personalized
mobility, a consistent and stable update of the travel behavior
analysis model can be prevented by the dynamic connectivity of
each client changing over time and space [17]. The heterogeneity
at the server is shown by the different information staleness
and richness of received local models. It can make the model
aggregation high-cost and low-performance [18], [19], e.g., due
to asynchronism, the created and received time of local models
may vary among each other, and a stale model can make the
global model overlearnt on redundant knowledge [20], [21].

To tackle the two kinds of heterogeneity, several solutions
have been proposed. In general, they can be grouped into two
kinds, either 1) focusing on optimizing the client-server interac-
tion to reduce the learning cost or 2) enhancing the model aggre-
gation to improve the learning performance [7], [22]. However,
it may be contradictory to apply the two kinds of solutions at
the same time, e.g., solutions improving model accuracy may
increase the network burden, as more frequent and detailed
updates are needed to alleviate the impacts of Non-IID data,
and solutions reducing the communication cost may damage
the overall training performance, as useful information may
be omitted when data packages are reduced to be transmitted
through the network.

As a novel solution to resolve such a dilemma, this paper
proposes an adaptive and integrated mechanism for AFDM,

called AiFed. First, it proposes an adaptive local model up-
loading strategy (ALMU) at each client and an adaptive global
model aggregation strategy (AGMA) at the server to remedy
the impacts of the two kinds of heterogeneities, respectively.
Moreover, by using ALMU and ALMU jointly, it implements
an optimized layer-wise model learning process for AFMD that
can reduce learning costs, accelerate learning speed and improve
learning accuracy. In general, the main contributions of the paper
can be summarized as the followings:
� It optimizes the local model uploading phase in AFDM

by ALMU, which can dynamically adjust the uploading
frequency of each model layer according to their rep-
resentational consistencies. As a result, it can not only
dramatically reduce communication costs but also avoid
overlearning on redundant knowledge;

� It enhances the global model aggregation phase in AFDM
by AGMA, which can accurately measure the significance
of local models (i.e., intermediate knowledge) according
to their information staleness and richness. Such that, it
can significantly improve overall performance in terms of
learning speed and accuracy;

� By integrating ALMU and AGMA, a novel layer-wise
model learning process for AFDM is implemented, which
is more adaptive and elastic than the model average func-
tion to address the two kinds of heterogeneities.

In addition, according to a holistic evaluation based on IID and
Non-IID settings of four common datasets, AiFed can effectively
and efficiently support AFDM with 1) an average reduction of
communication cost by about 61.76% (IID) and 56.88% (Non-
IID), 2) an average increase of learning accuracy by about 1.66%
(IID) and 3.05% (Non-IID), and 3) an average boost of training
speed by about 22.16% (IID) and 37.81% (Non-IID) against
five state-of-the-art baselines (i.e., FedAvg [23], FedProx [24],
FedAsync [25], FedConD [26], and PartialNet [27]).

The remainder of this article is organized as follows. Sec-
tions II and III introduce AFDM by summarizing related solu-
tions and formulating its optimization objectives, respectively.
Next, AiFed is presented and evaluated in Sections IV and
V, respectively. Finally, Section VI concludes the work and
sketches the future research directions.

II. RELATED SOLUTIONS

As illustrated by Fig. 2, AFDM can loosen the local model up-
loading and global model aggregation processes, which can run
concurrently without the restrictions on having all local models
uploaded and received to start the global model aggregation.
Such that, the clients and the server in AFDM can interact with
each other more freely according to their actual running statuses
with a more elastic aggregation process [31].

However, in such an asynchronous context, two kinds of
heterogeneity can be identified, namely:
� Heterogeneity at each client: The clients at the edge are

with limited or rated communication capabilities as well as
biased or duplicated local data. Hence, it is neither frugal
nor beneficial to upload deviate updates, as sharing them
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TABLE I
SUMMARY OF SOLUTIONS ABOUT UPLOADING AND AGGREGATING STRATEGIES

Fig. 2. Schematic diagram of AFDM.

will not only increase the learning cost but also influence
the overall performance [17], [20];

� Heterogeneity at the server: The server receives local
models with various temporal and informative attributes.
Hence, without addressing them properly, the global model
aggregation may become inefficient and ineffective, fail-
ing to achieve optimal performance in terms of learning
stability, speed, and accuracy [32], [36].

As summarized in Table I, to address the two heterogeneities,
current solutions can be categorized into two groups.

A. Group 1: Model Uploading Strategies

In general, the communication efficiency can be improved
in three ways, i.e., the compression of local models, the re-
duction of learning frequency, and the optimization of updating
mode [37]. Specifically, in the first approach, quantization [28],
sparsification [38] and related compression methods are pro-
posed to decrease the size of data packages in transmitting local

models. As for the second approach, specific methods, such
as parameter number reduction [39], periodic aggregation [29],
and over-the-air computation [40], are discussed. Even though
the first two approaches can effectively and efficiently reduce
communication costs in terms of network traffic, they may bring
side effects on overall performance.

Hence, under the constraint that useful information shall not
be dropped-out during the learning process, the last approach
can guarantee that the performance of the model will not be af-
fected. To achieve optimal performance, related updating modes
shall be designed by considering the characteristics of learning
algorithms, e.g., since shallow layers (which contain general
features) are more crucial but with fewer parameters than deep
layers (which learn ad hoc features) in DNNs [41], [42], a
layer-wise asynchronous model update strategy is designed to
optimize the model uploading process by reducing the update
frequency of deep layers [43].

B. Group 2: Model Aggregating Strategies

As the clients of AFDM can communicate with the server
immediately after completing the local training, the temporal
heterogeneity among local models can be reflected by the time
attributes, e.g., created time, received time, and aggregated time.
Based on the fact that the information importance may decrease
over time, known as information staleness, several weighted
strategies are studied, e.g., based on FedAvg, a temporally
weighted aggregation strategy is implemented to aggregate local
models with a weight derived from the difference between their
created and received time [7].

Moreover, since the distribution of local data is generally
correlated with user behaviors, informative heterogeneity may
exist in the local models as well. Based on the observation that
the generality and performance of machine learning models
depend on the data quality of each client, i.e., information
freshness, various filtering strategies are studied, e.g., a selective
aggregation strategy to use “fine” local parameters for the model
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aggregation [33], and a weighted strategy by incorporating an
attention mechanism in optimizing aggregation weights to avoid
the imbalance in local models [35].

C. Summary

As illustrated in [7], the joint utilization of the two kinds
of strategies can improve the model performance in terms of
training accuracy and speed, however, a mechanism, which can
uniformly measure the importance of temporal and informative
attributes encoded in local models at the server, as well as op-
timizing the updating frequency of layers of DNNs by utilizing
heterogeneous local resources at each client, is still missing. To
fill the gap, this paper proposes an adaptive and integrated mech-
anism AiFed to address the heterogeneity in AFDM through the
joint optimization of the local model uploading and global model
aggregation processes.

III. PROBLEM FORMULATION

To achieve an efficient and effective AFDM, this paper aims to
address the two kinds of heterogeneity identified at the client and
server, respectively, to 1) update local models cost-efficiently,
and 2) aggregate received local models for the global model more
accurately. To ease the expression, this section, first, formulates
the learning procedure of AFDM and then, discusses the two
optimization objectives to be addressed by this paper. For the
sake of readability, the important notations are listed in Table II.

A. Learning Procedure of AFDM

The learning procedure can be separated into a local learning
phase consisting of local model training and uploading, and a
global learning phase including global model aggregation and
distribution.

Phase 1. The local learning at each client to update local
model: Assume that there are M AFDM clients. Then, for the
mth client, its local data and model are marked as dm and wm,
respectively. Since in every local training, AFDM clients receive
the up-to-date global model from the server and use it to train
the local model, wm has two variants before and after the local
training, namely 1) the global model received from the server
wglor̂

m (before the training) and 2) the local model updated at the
client wlocr̂

m (after the training), where r̂ is the global learning
round when the received global model is generated.

Accordingly, for client m, its local training can be made
according to Formula (1).

Jm

(
wglor̂

m

)
=

1

nm

nm∑
i=1

f
(
di;w

glor̂

m

)

wlocr̂

m = wglor̂

m − ηJ ′
m

(
wglor̂

m

)
, (1)

where Jm(·) is the loss learned for client m and J ′
m(·) is its

derivative; f(·) is the task-oriented loss function shared among
clients (i.e., cross-entropy loss for classification, and mean
squared error for regression); nm is the total sample size of
local data dm; and η is the learning rate.

TABLE II
LIST OF KEY NOTATIONS USED IN THE PAPER

After the local model training, AFDM clients will upload their
updated local model wlocr̂

m to the server, separately, and then,
related clients will wait for an updated global model from the
server to start a new round of local learning or stop the learning
when a terminate signal is received.

Phase 2: The global learning at the server to aggregate
received local models for the global model: Since the global
learning process is unblocked, when a local model wlocr̂

m is
received, for consistency, the server marks it as wlocr̂k

k,r to denote
that the kth local model is received at the current global learning
round r. Note that due to the asynchronization, r̂ can be different
among clients, therefore, r̂k is used.

After that, when a pre-defined timer or counter is triggered, the
global aggregation in AFDM starts to update the global model
wglor according to Formula (2), which represents the model-
wise aggregation process as shown in Fig. 3(A).

wglor =
1

Kr

Kr∑
k=1

(
wlocr̂

k,r

)
, (2)

where Kr is the total number of local models to be aggregated
in the current global learning round r. Specifically, since the
aggregation is controlled by either a timer or a counter, Kr will
not change in each global learning round while a counter is used,
and otherwise, it may vary.
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Fig. 3. Two kinds of model aggregation processes. (A) The conventional model-wise aggregation process (defined in Formula (2)), and (B) The novel layer-wise
aggregation process (defined in Formula (3)).

Suppose that AI models, i.e., DNNs, consist of L layers, and
for a layer l, its corresponding parameter is defined as θl, then
Formula (2) can be rewritten to Formula (3), which implements
a layer-wise model aggregation as shown in Fig. 3(B).

ŵglor =
(
θglo

r

1 , θglo
r

2 , . . . , θglo
r

L

)

θglo
r

l = avg(LUMr
l ) =

1

Kr

Kr∑
k=1

θloc
r̂

l,k,r, (3)

where ŵglor is the global model generated based on the layer-
wise aggregation function; θglo

r

l is the parameter of the lth layer
in the rth global learning iteration; and LUMr

l is the lth row of
a layer update matrix (LUM), which, by default, is prefilled by
the parameter of layer l of the current global model, and updated
by the parameter received from local clients θloc

r̂k

l,k,r . Note that the
dimension of LUM is L×Kr, and if clients upload their local
model layers adaptively, it may happen that some cells of LUM
will keep unchanged.

Regardless of the aggregation function utilized (i.e., model-
wise or layer-wise), after the global model is updated, it is
distributed to the clients to start another global learning round
until a stop condition (e.g., the maximum number of rounds) is
reached.

In summary, while comparing the two aggregation functions,
the layer-wise aggregation process is more flexible for AFDM to
optimize its local model uploading and global model aggregation
phases [7], [20], [43]. Hence, to improve the efficiency and
effectiveness of AFDM in both local and global learning steps,
two optimization objectives of AiFed are defined, respectively.

B. Objective 1 (O.1) to Upload Local Models Cost-Efficiently

Since AFDM clients run with heterogeneous resources, to
accommodate their dynamic availabilities, it becomes critical to
upload local models with less communication cost. To achieve
such an objective, how costly to upload local models shall be
analyzed. Accordingly, the local model uploading cost for client

m, denoted as Bm, can be calculated according to Formula (4).

Bm = g
(
wlocr̂

m

)
× U =

L∑
l=1

(g(θl,m))× U, (4)

where g(·) counts the total number of parameters, and U is the
unit parameter size (i.e., float 4 bytes or double 8 bytes).

Due to the uncertainty of network status, client availability,
etc., Bm that affects data transmitting time and network payload
is hard to be estimated. Hence, to reduce the analysis complexity,
only the factors L, U and θl,m that are directly related to Bm are
analyzed. Since L and U are not changeable once the learning is
initialized,θl,m becomes the only variable affectingBm. Besides
the usage of compression techniques, it is intuitive to save Bm

by reducing the number of layers to be uploaded, however, such
a reduction may impact the overall model accuracy (as crucial
information may lose).

Therefore, the first objective (O.1) of AiFed is to save the
learning cost without damaging the learning accuracy, which is
defined in Formula (5).

(O.1) : min

(
L∑

l=1

(g(θl,m)× U × F (θl,m))

)

s.t. J
(
ŵglo

) ≈ J
(
wglo

)
, (5)

where wglo is the global model generated according to the
conventional model-wise aggregation; ŵglo is the global model
updated according to the layer-wise aggregation; and to keep
the performance of wglo and ŵglo equivalent, F (·) is a boolean
function determining whether to upload θl,m or not.

C. Objective 2 (O.2) to Update Global Model More Accurately

To achieve optimal performance in model aggregation, it
needs to harness the heterogeneity among received local models.
By adopting the idea of weighted aggregation [43], layers of the
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Fig. 4. Schematic diagram of AiFed: Adaptive and integrated mechanism for federated data mining in asynchronous mode. (A) Separated local model uploading
process supported by ALMU, and (B) Unblocked global model aggregation supported by AGMA. Note that in the server, Thread 1 is for the continuous local
model receiving, and Thread 2 is for the global aggregation that is triggered by a default counter or timer.

global model can be updated according to Formula (6).

θglo
r

l =
1

Kr
WV r × LUMr

l =
1

Kr

Kr∑
k=1

(
βr
k × θloc

r̂k

l,k,r

)
, (6)

whereβr
k is a weight factor in the weight vectorWV r to alleviate

the heterogeneity among local models in the rth global learning
round.

Hence, as the second objective (O.2) of AiFed, a weight
function, marked as V (·), is required to generate βr

k in WV r

that can make the layer-wise aggregated global model ŵglo with
smaller loss than the conventional model-wise aggregated model
wglo as defined in Formula (7).

(O.2) : min
(
J
(
ŵglo

)− J(wglo)
)
, J
(
ŵglo

) ≤ J
(
wglo

)
ŵglo = LUMr ×WV r

WV r = [βr
1 , β

r
2 , . . . , β

r
Kr ]

βr
k = V

(
wlocr̂k

k,r ; wloc
r

)
, (7)

where wloc
r contains all local models to be aggregated in the

rth global learning round, and V (·) finds βr
k by measuring the

importance of w
locr̂k
k,r in wloc

r .
In summary, to achieve O.1 and O.2, appropriate F (·) and

V (·) are required. Hence, AiFed proposes two strategies, i.e.,
ALMU and AGML, to implement them, respectively.

IV. THE PROPOSED AIFED

As shown in Fig. 4, the proposed AiFed consists of two
adaptive strategies, namely 1) an adaptive local model uploading
strategy (ALMU) to optimize the local model uploading process

Fig. 5. Workflow of ALMU in each client. (A) Local Model Training Step to
learn a new local model according to the current global model, and (B) Local
Model Uploading Step to calculate the layer representation consistency (rcl),
which determines whether to upload the corresponding layer.

by adjusting the uploading frequency of model layers dynam-
ically, and 2) an adaptive global model aggregation strategy
(AGMA) to enhance the model aggregation process by updating
each layer of the global model adequately.

A. Adaptive Local Model Uploading Strategy (ALMU)

As shown in Fig. 5, ALMU runs at each client with two
consecutive steps, namely:
� Step 1. Local Model Training: After receiving the global

model distributed by the server, the client will use it to
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start the local training, in which, the local model is updated
based on local data;

� Step 2. Local Model Uploading: The layer-wise changes
before and after the local training are analyzed. Based
on the analysis result, the local model is prepared to be
uploaded to the server. In this step, F (·) is implemented as
defined in Formula (5) to achieve O.1.

In general, F (·) works as a controller to optimize the upload-
ing frequency of each model layer. As a simple strategy, it can be
defined as a conditional function, e.g., uploading the shallow and
deep layers of DNNs [7] at a fixed rate, i.e., “3 : 1” indicating
that when shallow layers are uploaded three times, deep layers
are updated once [43]. Compared to shallow layers, deep layers
have much more parameters, by applying such a simple strategy,
the communication cost can be reduced.

However, the fixed rate may omit the dynamics within the
local training, as layers may be updated at different paces.
Specifically, in each learning iteration, incremental changes of
layers may vary from each other. Hence, ALMU is proposed with
an adaptiveF (·), which adopts a multivariate analysis technique,
called representational similarity analysis [44].

As shown in Fig. 5(B), a simplified representational consis-
tency (RC) [45], [46] of a layer before (θglol ) and after (θlocl )
the local training is calculated by measuring the differences
between two representational dissimilarity arrays (RDAs). Note
that RDA is a simplified version of the representational dissim-
ilarity matrix (RDM), which is a symmetric matrix (Q×Q)
storing (Q

2

2 −Q) unique pairwise distances between two repre-
sentations of the lth layer while processing Q pairs of stimuli.
Specifically, Q stimuli are small images prepared based on the
training dataset [45], and RDA only contains Q elements in
(Q

2

2 −Q) of RDM. Hence, compared to RDM, the computation
complexity of RDA can be reduced significantly.

Finally, the adaptive F (·) can be defined as Formula (8).

F
(
θglol , θlocl

)
=

{
1, rcl ≥ AT
0, otherwise

rcl

(
RDAglo

l , RDAloc
l

)
=

(
Cov(RDAglo

l , RDAloc
l )

σRDAglo
l

σRDAloc
l

)2

,

(8)

where rcl is the representational consistency of layer l, RDAglo
l

and RDAloc
l are elements in the corresponding RDAs, AT is an

adaptive threshold defined in Formula (9). In general, based on
the two coefficients αr̂ and αacc, AT can be calculated by giving
r̂ (the global round when the global model used to update the
local model is generated) and δacc (the accuracy change between
the global model and the updated local model).

AT =
1

1 + e−(αr̂×r̂+αacc×δacc)
. (9)

In summary, ALMU can be deployed in each AFDM client
to optimize the model updating process. Intuitively, ALMU can
save communication costs since fewer parameters are transmit-
ted. However, by using RC, ALMU can also filter out redundant

Fig. 6. Workflow of AGMA at the server. (A) The first thread to receive local
models from the clients, and save them into a queue continuously. (B) The
second thread to retrieve received models from the queue, and aggregate them
periodically (i.e., managed by a default timer and counter).

knowledge, and in turn, upload more valuable parameters to the
server. Hence, in general, ALMU can not only reduce learn-
ing costs but also improve overall training accuracy, which is
validated in Section V-B.

B. Adaptive Global Model Aggregation Strategy (AGMA)

As shown in Fig. 6, AGMA works at the server with two
concurrent threads, namely:
� Thread to receive local models: It runs continuously to

receive local models from asynchronous clients. Once a
local model is received successfully, the thread will add
it to a queue, which works as a buffer sharing received
models to the second thread for global model aggregation.

� Thread to aggregate local models: It is triggered by a
default timer or counter to first retrieve related local mod-
els from the queue. Second, the weight vector (WV) is
calculated based on a heterogeneity matrix (HM), which
stores the differences among local models. Finally, the
global model is updated by applying the weights on LUM
as defined in Formula (6).

To achieve the second objective of AiFed, V (·) in Formula
(7), which adjusts the adaptive weight βr

k according to the
importance of received local models, shall be defined. Since
in each global learning round of AFDM, received parameters
may vary in information staleness and richness, HM is used to
store these differences, and accordingly, WV (consisting of βr

k)
can be calculated based on HM.

Particularly, for the creation of HM, the level of information
staleness and richness shall be properly measured. First, based
on the assumption that among received parameters, the latest one
shall have the highest weight, the level of information staleness
LIS can be measured according to Formula (10).

LISr
k =

(e
2

)−(r−r̂k)

, (10)
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where r is the current global learning round, and r̂k is the global
learning round when the global model that is used to train the
local model in clientk is generated. OnceLIS for all participants
is computed, the first row of HM, denoted asHMr(1 : Kr), can
be filled.

Moreover, since local data are, in general, generated randomly
and subjectively, local parameters learned from them may make
divergent contributions to the global model. Hence, the level
of information richness LIR can be calculated according to
Formula (11).

LIRr
k = q(Dr̂k

k ), (11)

where Dr̂k
k is the local data of client k used to update the global

model generated in round r̂k, and q(·) can be a function of
information entropy (IE) or label number (LN):
� Function of IE: It measures the uncertainty of information

as defined in Formula (12).

IEr
k(D

r̂k
k ) = −

z∑
i=1

(pi × log2 pi), (12)

where pi is the percentage of the ith class in Dr̂k
k ; and z is

the total number of labels of a dataset.
� Function of LN: It measures the count of distinct labels

presented in the local data as defined in Formula (13).

LNr
k (D

r̂k
k ) =

z∑
i=1

Li, (13)

where Li is a boolean value, representing the presence of
the ith label.

Regardless of whether IE orLN is used, after the calculation
of LIR for each participant, the second row of HM, denoted as
HMr(2 : Kr), can be created. Accordingly, by merging the
two rows, HM in the global learning round r can be defined in
Formula (14).

HMr =

[
HMr(1 : Kr)

HMr(2 : Kr)

]

=

[
LISr

1,1 · · · LISr
1,Kr

LIRr
2,1 · · · LIRr

2,Kr

]
. (14)

Finally, based on HM, V (·) implemented in AGMA to gen-
erate βr

k in WV r can be defined in Formula (15).

βr
k = V

(
w

locr̂k
k,r ;wloc

r

)

=
nr̂k
k

nr
× LISr

k

LISr
× LIRr

k

LIRr
, (15)

where nr̂k
k is the size of local data of client k used to update the

global model generated in round r̂k; and nr, LISr and LIRr

are the sum of nr̂k
k , LISr

k and LIRr
k, respectively.

After the calculation of βr
k, WV r can be formed and used

in Formula (6) to update the global model layer-wisely. In
general, LIS and LIR can steer the learning direction of the

Algorithm 1: Integration of ALMU and AGMA.
Part 1: Executed in each AFDM client
1: Training the local model
2: for each layer l ∈ L in the updated local model do
3: Calulating rcl and AT
4: if rcl ≥ AT then
5: Adding θlocl to ωloc

6: end if
7: end for
8: if ωk is not null then
9: Uploading ωloc, r̂ and data size n to the server
10: end if
Part 2: Executed in the AFDM server
1: Thread 1: Receiving local models continuously
2: Thread 2: Aggregating local models periodically
3: while the default counter or timer is triggered do
4: Increasing the global round to r
5: for k ∈ Kr do
6: Calculating βr

k in WV r according to Formula (15)
7: end for
8: Cloning ω̂glo(r−1)

as ω̂glor

9: for θglo
r

l ∈ ω̂glor do
10: updating θglo

r

l according to Formula (6)
11: end for
12: end while

global model, and in return, improve the learning accuracy. The
performance of AGMA is tested in Section V-C.

C. AiFed: The Integration of ALMU and AGMA

In general, ALMU and AGMA can be used in AiFed sepa-
rately, however, their integrated usage represents the ultimate
form of AiFed. As described in Algorithm 1, AiFed consists of
two parts, namely:
� Part 1 in each client: First, the clients are initialized to

train local models in parallel. Second, for each layer in
the updated local model, rcl and AT are calculated and
compared. If rcl is not smaller than AT , θlocl is added to
a set ωloc. Finally, if ωloc is not empty, it, together with
r̂ the round when the global model used to train the local
model is generated, and n the number of data used in the
local training, is uploaded to the server.

� Part 2 in the server: There are two parallel threads, namely
one to receive the local models from clients continuously,
and another one to aggregate received local models periodi-
cally. Once the aggregation starts,WV r is, first, calculated,
and then, the weighted layer-wise aggregation starts. Since
it may happen that there is no update for some particular
layers, a replica of the current global model is used.

Moreover, since the above algorithm runs ALMU and AGMA
separately at each client and the server, the time complexity (TC)
of AiFed contains two parts, namely:
� TC of ALMU: As rc for each layer needs to be calculated

based on RDAs, TC for ALMU is O(L×Q× emax),

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on August 21,2024 at 08:57:16 UTC from IEEE Xplore.  Restrictions apply. 



YOU et al.: AIFED: AN ADAPTIVE AND INTEGRATED MECHANISM FOR ASYNCHRONOUS FEDERATED DATA MINING 4419

where L is the total number of layers in the model, Q
is the number of selected stimuli, and emax denotes the
maximum dimension of the output among the L layers.

� TC of AGMA: During the model aggregation, the most
complex operation occurs when the adaptive weight is
applied to each layer of each received local model. Hence,
TC for AGMA is O(L×M), where L is the total number
of layers in the model, and M is the total number of
available clients, which is the maximum value of Kr (i.e.,
the number of learning participants in a learning round).

Finally, as ALMU and AGMA are integrated by AiFed
in the asynchronous mode, the overall TC of AiFed is
O(max((L×Q× emax), (L×M))). In general, O(L×Q×
emax) of ALMU at each client will be significantly higher
than O(L×M) of AGMA at the server, and it makes AiFed
costly for AFDM clients. Hence, a tactic can be utilized dur-
ing the local training to reduce the TC of ALMU. Specifi-
cally, first, the selected Q pairs of stimuli (i.e., small sam-
ples under different classes) are selected and marked in the
training dataset. Second, when the local training starts, their
layer-wise representations are buffered for the initial and last
epochs. Finally, based on the buffered representations, RDAs
can be created and used to calculate rc for each layer. Such
that, the TC of ALMU can be omitted, and the overall TC of
AiFed can be reduced to O(L×M), which only occurs at the
server.

In summary, based on the layer-wise learning process, AiFed
optimizes and enhances the local model uploading and global
model aggregation processes of AFDM according to two ded-
icated strategies, i.e., ALMU and AGMA. Such that, AiFed
can not only reduce client-server communication costs but
also improve overall model performance, which is analyzed in
Section V-D.

D. Convergence Analysis

Compared to conventional methods, the local uploading and
global aggregation processes are optimized by AiFed, which
may affect its convergence. As revealed by the research [47],
given a proper learning rate and sufficient learning rounds, the
layer-wise uploading of FL can converge at a linear speed.
Such that, the convergence of the global aggregation mechanism
is further analyzed by giving three assumptions on the loss
functions Jm, ∀m ∈ M .

Assumption 1 (Smoothness): P Jm is π-smooth with π >
0, i.e., for ∀w1, w2, Jm(w2)− Jm(w1) ≤ 〈∇Jm(w1), w2 −
w1〉+ π

2 ‖w2 − w1‖2.
Assumption 2 (Strong Convexity): Jm is μ-strongly con-

vex with μ ≥ 0, i.e., for ∀w1, w2, Jm(w2)− Jm(w1) ≥
〈∇Jm(w1), w2 − w1〉+ μ

2 ‖w2 − w1‖2.
Assumption 3 (Global Optimal): Assume that the learning

problem has at least one solution w∗, that minimizes the global
loss function J(w), i.e., ∇J(w∗) = 0.

For ease of expression, we define α =
∑R

r=1 Kr

M×R as the global

participant rate, β̃ = minr,k{βr
k} as the minimum aggregation

weight, and τmax = maxr,k{r − r̂k} as the maximum staleness.

Based on the convergence analysis in [48], the Theorem 1 can
be defined as listed below:

Theorem 1: Ifη < μ
π2 , after the initial global model is updated

for R rounds, the trained model satisfies

E[J(wR)]− J(w∗) ≤ κR(J(w0)− J(w∗)) + δ, (16)

where κ = [1− 2αηβ̃(μ− ηπ2)]
1

1+τmax and δ =
ηπ

2β̃(μ−ηπ2)

∑
m∈M βm‖∇Jm(w∗)‖2.

From Theorem 1, the following insights can be observed:
� κ represents the convergence rate in a round, which de-

creases when the staleness τmax increases;
� δ represents the residual error (i.e., the function can con-

verge to δ − neighbourhood of the optimal value), which
increases when the data heterogeneity level increases (the
value of ||J(w∗)||2 increases);

� The proposed adaptive uploading and aggregation methods
have enhanced β̃, thus the residual error δ is reduced
compared with traditional methods.

Therefore, theoretically, AiFed can make the model converge,
which is also demonstrated by the evaluation results presented
in Section V-D.

V. PERFORMANCE EVALUATION

To holistically reveal the performance of AiFed, two kinds
of data are prepared based on four standard datasets. Specif-
ically, IID data is created to evaluate the capability of AiFed
in tackling the temporal heterogeneity caused by AFDM, and
Non-IID data is used to measure how well AiFed is in supporting
more realistic AFDM scenarios, in which, both temporal and
data heterogeneities coexist. Based on common experimental
settings, AiFed is tested in three stages, namely 1) the evaluation
of ALMU; 2) the evaluation of AGMA; 3) the evaluation of the
integrated ALMU and AGMA, which represents the ultimate
form of AiFed.

A. The Common Settings

First, four common AFDM tasks are defined to learn corre-
sponding convolution neural networks (CNNs) with two shallow
layers and two deep layers based on four standard datasets,
namely:
� Modified National Institute of Standards and Technol-

ogy (MNIST1) dataset and Fashion-MNIST (FMNIST2)
dataset: They contain 60 thousand training samples and 10
thousand testing samples in 10 labels, and their image size
is 28× 28× 1. The corresponding CNN model has two
convolutional layers (with 64 and 128 filters, respectively)
and two fully connected layers (with 256 and 512 neurons,
respectively);

� CIFAR-103 dataset: It contains 50 thousand training sam-
ples and 10 thousand testing samples in 10 labels, and its
image size is 32× 32× 3. The two convolutional layers
of the corresponding model have doubled filter numbers

1http://yann.lecun.com/exdb/mnist
2https://github.com/zalandoresearch/fashion-mnist
3https://www.cs.toronto.edu/kriz/cifar.html
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TABLE III
DATA PARTITION SETTING

TABLE IV
HYPERPARAMETERS USED IN THE LEARNING PROCESS

compared with MNIST’s model since CIFAR-10 is a more
complicated dataset, and the neuron numbers of fully con-
nected layers are the same as MNIST’s model;

� German Traffic Signs (GermanTS4) dataset: It contains
34,799 training samples and 12,630 testing samples with
43 labels, and its image size is 32× 32× 3. The corre-
sponding model has the same filter numbers as MNIST’s
model and has half neuron numbers of fully connected
layers compared with MNIST’s model.

Second, 40 data partitions are created based on the training
samples of the four datasets according to the constraints defined
in Table III. In general, there are two kinds of settings, i.e.,
1) Non-IID setting, which is prepared according to [7] with
uneven data size and labels in each data partition, and 2) IID
setting, in which, training samples are shuffled randomly and
assigned evenly. After these data partitions are prepared, they
are randomly and uniquely assigned to 40 clients as their local
data, and used to support the learning process that is configured
with hyperparameters listed in Table IV, where local epochs
denote the number of training iterations a client will execute to
update the local model. Note that Non-IID and IID settings share
the same hyperparameters.

Third, five state-of-the-art federated learning methods are
used as the baselines, namely:
� FedAvg [23]: The most popular synchronous method with

an average aggregation strategy (C = 0.2 in this paper);
� FedProx [24]: An improved method of FedAvg with a

proximal term μ on the local optimization function to
address data heterogeneity among clients (μ = 1 in this
paper);

� FedAsync [25]: An asynchronous method with a mixed
hyper-parameter α in the aggregation function to remedy
the impact of stragglers in synchronous mode (α = 0.5 and
μ = 1 in this paper);

4https://bitbucket.org/jadslim/german-traffic-signs

� FedConD [26]: An asynchronous method with a selective
communication strategy based on update frequencies to
speed up the model convergence (γ = 0.2 in this paper);

� PartialNet [27]: A synchronous method that only transmits
parameters of the biggest dense layer in each round to
reduce communication costs for the training of DNNs (to
form and update the whole global model, other layers will
be transferred every three rounds in this paper).

Finally, as for the evaluation metrics, three common indicators
are defined and utilized, namely:
� costa the accumulated communication cost: It is calcu-

lated according to Formula (17), where rcurrent is the
current global learning round;

� acch the highest accuracy achieved: It is identified accord-
ing to Formula (18), where TP, TN, FP, FN represent true
positives, true negatives, false positives, and false nega-
tives, respectively. Note that the maximum global round is
set as 400 when all the baselines are converged;

� roundt the round first reached the target accuracy: It
records the round number that the accuracy of the global
model first reaches the pre-defined threshold, which is
90%, 70%, 50%, and 85% for MNIST, FMNIST, CIFAR-
10, and GermanTS in Non-IID cases, and 95%, 75%, 60%,
and 90% in IID cases. Note that IID cases reduce the
learning complexity, and thus, their target accuracies are
higher than the Non-IID cases.

costa =

rcurrent∑
r=1

(costr)

s.t. costr =
4× nr

parameter

1024× 1024
(17)

acch = max{acct}, t = 1, 2, . . ., 400

s.t. acc =
TP + TN

TP + FP + FN + TN
. (18)

It is worth noting that all the code and data used in the above-
configured experiments are available at the link.5 In the experi-
ment, 40 clients are virtualized based on a Windows server (with
Intel Xeon Gold 5218R CPU 2.10 GHz, 2 NVIDIA GeForce
RTX 3090 GPUs, and 128 G RAM) and each virtualized client
is randomly assigned with 1.5–4.5 MHz bandwidth, 8–16 GB
RAM, and 1.0–2.0 GHz CPU. The variation in computing power
is intended to simulate a heterogeneous and asynchronous envi-
ronment.

B. The Evaluation of ALMU

To evaluate ALMU, stimuli sets for the four datasets shall be
defined for the calculation of RC. Specifically, for MNIST, FM-
NIST, and CIFAR-10, 50 test stimuli are used (10 categories× 5
stimuli), and for GermanTS, 86 stimuli are used (43 categories
× 2 stimuli). To reduce the burden of computing the conven-
tional representational dissimilarity matrixes (RDMs) (which
are symmetric), RDAs are used by randomly sampling 50 pairs

5https://github.com/IntelligentSystemsLab/AiFed
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Fig. 7. Accuracy versus cost for ALMU and the five baselines in IID. (A) MNIST, (B) FMNIST, (C) CIFAR-10, and (D) GermanTS.

Fig. 8. Accuracy versus cost for ALMU and the five baselines in Non-IID. (A) MNIST, (B) FMNIST, (C) CIFAR-10, and (D) GermanTS.

from either (50 ∗ 50)/2 or (86 ∗ 86)/2 in RDMs to calculate
RC. It is obvious that RDAs are less complex than RDMs (as
shown by their differences in the number of stimuli pairs), and
hence, the adoption of RDAs can restrict the computation cost
added to the local learning step.

Accordingly, the efficiency and effectiveness of ALMU are
evaluated. First, as illustrated in Figs. 7 and 8, ALMU can remain
at a higher and more stable growth rate per unit cost of com-
munication than the five baselines during the inter-knowledge
exchanging process. Particularly, along with the growth of costa
in all eight cases (four in Non-IID + four in IID), ALMU has a
much shaper accuracy growth curve than the five baselines. It
shows that ALMU is beneficial for AiFed to be cost-efficient.

Moreover, while comparing the “Uploading” group with the
“Baseline” group in Table V, ALMU can also make a bilateral
improvement on acch and roundt, specifically:
� acch improves on average by about 1.65% and 2.74% in

IID and Non-IID cases, respectively;
� roundt shortens on average by about 17.63% and 33.90%

in IID and Non-IID cases, respectively.
The above analyses illustrate that ALMU can resolve the

dilemma of saving communication costs and improving learning
performance (in terms of accuracy and speed) simultaneously.
Notably, its improvements in Non-IID cases are more significant
and stable than those in IID cases, illustrating its merits in
handling AFDM tasks with heterogeneous local resources that
are more likely to occur in real-world situations.

C. The Evaluation of AGMA

Since LIS (level of information staleness) and LIR (level of
information richness) can be used separately or jointly, and LIR

can be implemented based on IE (information entropy) or LN
(label number), in total, there are five AGMA variants, namely
LIS, LIR− IE and LIR− LN for independent usage, and
AGMA− IE, andAGMA− LN for joint usage. Based on the
common settings, the five variants are executed and analyzed.

First, according to the results in the “Aggregation” group
in Table V, both LIS and the two variants of LIR (LIR−
IE/LN ) outperform most baselines not only in training accu-
racy but also in training speed regardless of Non-IID and IID set-
tings. As for more complex Non-IID cases, 1) LIS can improve
training accuracy by about 1.90%, 2.80%, 0.46%, and 0.65%,
and correspondingly, boost training speed by about 51.81%,
70.24%, 12.28%, and 2.76% for MNIST, FMNIST, CIFAR-10,
and GermanTS, respectively; and 2)LIR − IE andLIR− LN
share a similar performance with acch of 93.18%, 71.69%,
53.86%, and 89.65%, and roundt of 160, 242, 56, and 230 for
the four datasets, respectively. It shows that the temporal and
data heterogeneities in local models can be addressed properly
by LIS and LIR.

Moreover, as shown in Tables VI and VII, the accuracy growth
of all five AGMA varients keeps ahead of the five baselines
in both IID and Non-IID cases, and the joint usage of LIS
and LIR, represented by AGMA− IE/LN , can inherit and
combine their advantages. As a result, compared to the best score
of the five baselines, AGMA− IE/LN can have an average
acch increase of 2.24% in four IID cases, and 2.65% in four
Non-IID cases.

In summary, the above analyses show that the joint usage of
LIS andLIR is superior to the independent usage, especially in
Non-IID settings, and AGMA can tackle the temporal and data
heterogeneities of local models through the weighted layer-wise
model aggregation process proposed and implemented in AiFed.
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TABLE V
EXPERIMENT RESULTS OF THE THREE ANALYSIS GROUPS
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TABLE VI
ACCURACY COMPARISON BETWEEN AGGREGATION STRATEGIES AND BASELINES IN IID SETTING

TABLE VII
ACCURACY COMPARISON BETWEEN AGGREGATION STRATEGIES AND BASELINES IN NON-IID SETTING
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Fig. 9. Accuracy curve of AiFed-IE/LN and the five baselines in IID. (A) MNIST, (B) FMNIST, (C) CIFAR-10, and (D) GermanTS.

Fig. 10. Accuracy curve of AiFed-IE/LN and the five baselines in Non-IID. (A) MNIST, (B) FMNIST, (C) CIFAR-10, and (D) GermanTS.

D. The Evaluation of the Integrated Mechanism

The optimal performance of AiFed can be analyzed by using
ALMU and AGMA jointly. First, according to the results in
the “Integration” group of Table V, AiFed outperforms the five
baselines in learning accuracy and speed regardless of IID or
Non-IID settings in all four datasets, specifically:
� Learning accuracy and speed in IID cases: Since IID

cases alleviate the data heterogeneity of AFDM, AiFed
and the five baselines have tied performance as shown by
the accuracy curves in Fig. 9. However, the improvement
of AiFed on MNIST and FMNIST is more pronounced
than on CIFAR-10 and GermanTS, as a sharp accuracy
boost can be observed in Fig. 9(A) and (B). Moreover,
compared to the five baselines, AiFed can first reach the
target accuracies with an average acceleration of about
22.16%. Such an improvement can also be observed in
Fig. 11(A). It shows that AiFed can better tackle the tem-
poral differences in AFDM to accommodate clients with
different computation and communication capabilities, and
also in various working statuses and availabilities;

� Learning accuracy and speed in Non-IID cases: Even
though Non-IID cases are more complex than IID cases,
the improvement brought by AiFed is more profound. As
compared to the five baselines, the learning accuracy in-
creases and the learning speed accelerates by about 3.05%
and 37.81% on average, respectively. Moreover, as shown
in Figs. 10 and 11(B), such an improvement is consistent
across all four datasets, illustrating the high generability
of AiFed in supporting not only simple but also complex
AFDM tasks. Since in real-world scenarios, Non-IID data
sensed from individuals commonly exist in ubiquitous IoT
systems and services, AiFed is more suitable to meditate

Fig. 11. Learning time comparison when reaching the target accuracy in (A)
IID cases and (B) Non-IID cases.

and consolidate duplicated and biased inter-knowledge
extracted from AFDM clients.

Moreover, as revealed in Fig. 9, AiFed has steady accuracy
growth curves and can also converge quickly in IID cases. As for
Non-IID cases (Fig. 10), although the curves of AiFed fluctuate
slightly compared with IID settings, they can still first reach
target accuracies compared to the five baselines and maintain
good performances until the end of learning. The results show
that AiFed has satisfactory and stable training performance.

Finally, as illustrated in Fig. 12, the communication costs of
AiFed and the five baselines when reaching corresponding target
accuracies in IID and Non-IID cases are analyzed. It shows
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Fig. 12. Communication cost comparison when reaching the target accuracy
in (A) IID cases and (B) Non-IID cases.

that AiFed is more cost-efficient than the five baselines with
an average cost reduction of 61.76% and 56.88% in IID and
Non-IID cases, respectively. Such a significant improvement is
achieved through the layer-wise model uploading and aggre-
gation processes proposed and implemented in AiFed, as only
selective layers of local models (with high potential to improve
the overall performance) will be uploaded and aggregated for
a global model. Through the combined effects of layer-wise
model uploading and aggregation, AiFed can first reach the
target accuracy with the lowest communication cost in all IID
and Non-IID cases.

In summary, the proposed mechanism AiFed inherits the
advantages of ALMU and AGMA, and compared with the five
baselines, it can remarkably improve the overall performance for
both IID and Non-IID cases, namely, 1) saving communication
costs on average by about 61.76% (IID) and 56.88% (Non-IID),
2) increasing learning accuracy on average by about 1.66% (IID)
and 3.05% (Non-IID), and 3) boosting learning speed on average
by about 22.16% (IID) and 37.81% (Non-IID). Such a result
shows the merits of AiFed in addressing the heterogeneity in
AFDM.

VI. CONCLUSION AND FUTURE WORK

AFDM starts to be studied to bridge the isolated and frag-
mented data islands restricted by the growing concerns on data
security and user privacy for collaborative knowledge mining. To
comprehensively address the heterogeneity at each client (i.e.,
Non-IID data and uneven computing power) and the server (i.e.,
differences of information staleness and richness in received
local models), this paper proposes an adaptive and integrated
mechanism for AFDM, called AiFed. Specifically, first, it de-
fines the layer-wise local model uploading and global model
aggregation processes as the optimization foundation. Second,
it designs two adaptive strategies, i.e., ALMU to determine
the uploading of the model layer based on its representational

consistency before and after the local training, and AGMA to ag-
gregate received local model layers based on an adaptive weight
measuring the information staleness and richness. Finally, it
integrates ALMU and AGMA to support AFDM with overall
learning performance (in terms of learning cost, accuracy, and
speed) improved.

As compared with five state-of-the-art methods based on four
standard datasets in IID and Non-IID settings, first, ALMU can
maintain the highest accuracy growth rate per unit cost of com-
munication to be cost-efficient. Second, AGMA can significantly
boost the performance of global model aggregation for both IID
and Non-IID cases to be task-generic. Finally, AiFed combines
and inherits the advantages of ALMU and AGMA that can 1)
reduce the communication cost on average by about 61.76%
(IID) and 56.88% (Non-IID), 2) increase learning accuracy on
average by about 1.66% (IID) and 3.05% (Non-IID), and 3)
accelerates learning speed on average by about 22.16% (IID)
and 37.81% (Non-IID).

In the future, the connectivity of AFDM clusters will be stud-
ied to further optimize client-server communication by creating
a hierarchical and robust network with high speed but low traffic.
Second, on top of the adaptive weight, a sensitivity indicator
of temporal and informative attributes will be investigated to
steer the model aggregation direction and stabilize the accuracy
growth for each learning round. Finally, in the case of knowledge
scarcity caused by either lack of local data or unwillingness
to participate, small-sample approaches, i.e., federated meta-
learning, will be explored to mine transferable and customizable
knowledge, and in the meanwhile, related incentive mechanisms
will be designed to ensure the fairness and attractiveness of
AFDM.
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