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Abstract. Parking occupancy prediction (POP) can be used for many
real-time parking-related services to significantly reduce the unnecessary
cruising for parking and additional congestion. However, accurate and
fast forecasting in data-poor car parks remains a challenge. To tackle
the bottleneck, this paper proposes a knowledge transfer framework that
can customize a lightweight but effective pre-trained network to those
data-deficient parking lots for POP. The proposed approach integrates
two novel ideas, namely Customization: select source domain utilizing
reinforcement learning based on parking-related feature matching; and
Learning to Learn: extract insightful prior knowledge from the selected
sources using Federated Meta-learning. Results of a real-world case study
with 34 parking lots in Guangzhou City, China, from June 1 to 30,
2018, show that compared to the baseline, the proposed approach can
1) bring approximately 21% extra performance improvement; 2) improve
the model adaptation and convergence speed dramatically; 3) stabilize
predictions with error minor variance.

Keywords: Knowledge-based application · Knowledge transfer ·
Parking occupancy prediction · Federated meta-learning ·
Reinforcement learning

1 Introduction

Growing applications of parking occupancy prediction (POP) have been wit-
nessed in various parking-related smart services, such as parking guidance [1],
dynamic parking charging [2] and parking spaces sharing [3], they alleviate the
shortage of parking space, and the associated impact of traffic congestion [4].
However, an emerging bottleneck hinders the mass acceptance of POP services:
under-performing in poor data cases. To tackle the bottleneck, this paper pro-
posed an integrated approach, Customization and Learning to Learn (CLL),
which can provide a lightweight but effective customized model for the parking
lots that lack reliable historical data.
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In the literature, data augmentation and structure optimization are two com-
mon ways to handle the small-sample prediction task in POP. They improve the
performance by incorporating heterogeneous data, but the heavy data depen-
dence on a specific area and the capacity to predict under null-data conditions
remain challenges in these studies [5–7]. By contrast, knowledge transfer is a new
and effective way to address these problems, using the prior knowledge extracted
from the POP tasks in other parking lots (e.g., parking patterns shared between
target and source domains) to pre-train a predictive model for car parks with
insufficient data [8,9]. However, while transferring extra information for model
training to alleviate data shortage, the extra distraction would also accumulate
during learning iterations which can deteriorate the performance [10]. Therefore,
what and how to transfer becomes the major topic for researchers and a knowl-
edge learning method that can counteract misinformation is required to improve
the accuracy of small-sample POP.

To fill the gap, we improve knowledge transfer by adopting two novel ideas,
Customization and Learning to Learn, namely 1) Customization: select appro-
priate source domains (i.e., “guiders”) by utilizing reinforcement learning based
on feature matching to facilitate the knowledge learning; 2) Learning to Learn:
find the update direction by leveraging Federated Meta-learning [11] to pre-train
an effective model.

In particular, the main contributions of this paper are as follows:

– Through the integration of Customization and Learning to Learn, the pro-
posed approach provides a new and effective way to solve the small-sample
issues in parking occupancy prediction.

– Unlike existing approaches, CLL can learn more insightful knowledge and
reduce negative transfer by enabling the pre-training process using federated
meta-learning and the client selection using reinforcement learning.

– Experiment on a real-world dataset with 34 parking lots in Guangzhou empir-
ically show that CLL brings nearly 21% extra performance improvement com-
pared with several representative methods.

The remainder of this paper is structured as follows. In Sect. 2 a literature
review is presented to summarize the current challenges and solutions in small-
sample POP. Then, Sect. 3 introduces the proposed approach for small-sample
POP, which is evaluated in Sect. 4. Finally, Sect. 5 concludes the work and dis-
cusses future research directions.

2 Related Work

While applying prediction model for the small-sample predictions of parking
occupancy and other traffic conditions, several challenges are emerging and quite
a few solutions are proposed.
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Summary of Challenges. 1) Data shortage: The incompleteness of local park-
ing records puts the personalized models’ training in a difficult circumstance that
is likely to be trapped in local optimum or over-fitting [12]. 2) Knowledge learn-
ing: Disinformation accumulates as additional data is introduced, so avoiding
negative learning is vital to model training [13]. 3) Guider selection: The opti-
mization of customization depends crucially on how the clients are selected, as
they are the sources of prior knowledge [14]. 4) Generalizability: A flexible data
fusion mechanism is required to be capable of handling various degrees of missing
data from different car parks.

Related Solutions. Deep learning methods has achieved great success in traf-
fic condition prediction, they emphasize the advantages of data augmentation
and heterogeneous data fusion, e.g., R-GANs [15], which provide data recov-
ery by generating samples that look closer to the original data; WoT-NNs [16],
which leverages the techniques of Web of Things (WoT) to collect additional
information and incorporate them into neural networks; and ToGCN [7], which
uses a Topological GCN followed with a Sequence-to-sequence framework to
predict future traffic flow and density with temporal correlations. However, they
have heavy dependence on availability of other data sources in a specific area and
their burdensome structures may cause the lagging in model updates. Differently,
knowledge transfer methods provide target domains prior knowledge extracted
from source domains through a pre-training process, so that the models can
be trained without much historical data. An illustration is a traffic prediction
method bringing about 4–13% extra performance improvements by adopting
transfer learning framework [8]. However, traditional transfer methods may suf-
fer the negative learning issue to train a biased model because of its direct
“reproduction”, which fosters the study of improving knowledge transfer. A rep-
resentative approach is FADACS [9], a GAN-based ConvLSTM transfer learning
framework that generates a parking occupancy prediction model utilizing mutual
attack of target and source with graph-based patterns. But, as a foundation to
optimize the knowledge adaptation for transfer methods, source selection is over-
looked yet.

Table 1. Emerging challenges and representative solutions ( : Solved; : Partially;
: Not-solved)

Challenges WoT-NNs (2020) ToGCN (2021) FADACS (2021) CLL*(proposed)

Data shortage

Knowledge learning

Client selection

Generaliz-ability

In summary, Table 1 shows the evaluation of the reviewed methods by their
abilities in addressing the four challenges. The knowledge transfer methods (i.e.
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FADACS) can outperform the typical deep learning models (i.e., ToGCN) in
knowledge learning. However, the source selection is still inadequate, which may
make them easier to be misled by the negative transfer. To fill the gap, this paper
proposes a novel approach, i.e. CLL, which integrates federated meta-learning
and reinforcement learning to pre-train a simple but efficient POP model for
data-deficient parking lots.

3 Approach

As illustrated in Fig. 1, the proposed approach consists of A) a model training
module, which employs a neural network with LSTM as the backbone; B) a
model pretraining Module, which utilizes FedFOMAML (i.e., the Learner) to
learn, integrate and transfer prior knowledge from “guiders”, then provides the
targets a customized and well-trained prediction model; and C) a client selection
module, which produces an appropriate client-selecting strategy (i.e., build a
Selector). Each part of the proposed approach will be described in the following
subsections.

Guiders

Clients

Matching

Knowledge

Optimizer

Data-deficient
parking lots

Networks
POP

Initial
Params

Parking-
related 

Features

Customized
Network

Local
Data

A

B

C

Fig. 1. Overall structure of the proposed approach: A) model training module using
LSTM, B) model pretraining module applying FML, C) client selection module based
on feature matching.

3.1 The Model Training Module

We utilize Recurrent Neural Network (RNN) which is a widely recognized deep
learning approach to process temporal signals, and we pick LongShort-Term-
Memory (LSTM) as the building block in RNN due to its success in numerous
real-world applications [17]. Briefly, the state transition equation of LSTM is
presented in Eq. (1).
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it = σ(Wiixt + bii + Whiht−1 + bhi)
ft = σ(Wifxt + bif + Whfht−1 + bhf )
gt = tanh(Wigxt + big + Whght−1 + bhg)
ot = σ(Wioxt + bio + Whoht−1 + bho)
ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(1)

where ht is the hidden state at time t, ct is the cell state at timet, xt is the input
at time t, ht−1 is the hidden state of the layer at time t − 1 or the initial hidden
state at time 0, and it, ft, gt, ot are the input, forget, cell, and output gates,
respectively. σ is the sigmoid function, and � is the Hadamard product.

3.2 The Model Pretraining Module

Unlike traditional transfer learning, meta-learning takes a longer-term and com-
prehensive horizon, i.e., it integrates gradients from multi-domains and updates
a global network instead of employing network parameters obtained from source
domains, which enables the learner learn more insightful knowledge and reduce
the adverse impact of negative transfer. The following subsections will describe
the meta-learning mechanism and its integration with federated learning for
small-sample parking occupancy prediction.

Meta-learning. We adopt a simple but effective meta-learning method, First-
order Model-agnostic Meta-learning (FOMAML) [18], which is simplified based
on the Model-agnostic Meta-learning (MAML) by ignoring the second derivative
terms to reduce the number of gradient steps in finding the best match. Given
that M defines the number of pre-training tasks, the objective function of MAML
can be defined by (2), which is to find a set of initial parameters minimizing
the learner loss. Thereinto, θ represents the intermediate parameter related to
the initial parameter φ; θm denotes the current parameter in task m; lm(θm)
indicates the error with θm in task m; and L(φ) is the total after-training loss
of initial parameter φ.

min L (φ) =
M∑

m=1

lm (θm) (2)

The derivative of (2) is the gradient function. To reduce computational com-
plexity, the second derivative terms can be ignored [18]. It means ∇φlm (θm) can
be replaced to ∇θl

m (θm), and the gradient function can be written as (3).

∇φL(φ) =
M∑

m=1

∇φlm (θm) ≈
M∑

m=1

∇θl
m (θm) (3)

where ∇φL(φ) is the gradient of L (φ) with respect to φ; ∇φlm (θm) is the gra-

dient of lm
(
θ̂m

)
with respect to φ; and ∇θl

m (θm) is the gradient of lm (θm)
with respect to θ.
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FedFOMAML for POP. The integration is implemented through a pre-
training process as illustrated in Algorithm 1, where the clients and targets
are Train set and Test set. Furthermore, these two sets are divided into four
separate parts, namely 1) Train-Support R1, for obtaining local iterative param-
eters; 2) Train-Query R2, for getting local gradients; 3) Test-Support R3, which
represents the “few-sample” that target parking lots have for fine-tuning the per-
sonalized network; and 4) Test-Query R4, for evaluating performance. Expressly,
assume there are N parking lots in the federation, and M clients are selected as
guiders. In a particular epoch p, local gradients are obtained from each guider
via a local pre-training based on local data, then the global network parameter
φp can be updated to φp+1 the global parameter of the next epoch with the
aggregation of local gradients by FedFOMAML mechanism [11]. Given that Rm

1

and Rm
2 represent local Train-Support set and Train-Query set, respectively, lr

denotes learning rate, and θm is the iterative parameter in pre-training task m,
the process can be written as (4).

φp+1 = φp − lr

M

M∑

m=1

∇θl
m(θm, Rm

2 )

s.t. θm = φp − lr∇φlm(φp, Rm
1 )

(4)

Algorithm 1. Learner: FedFOMAML - pseudocode
Require: Batch of pre-training tasks m = 1, ..., M selected from federation
1: initialize φ, learning rate lr, pre-training and fine-tuning max-epochs p, pf

2: divide data set into R1, R2, R3, R4

3: while not done do
4: for i = 1, ..., p do
5: for each pre-training task m do
6: compute gm

1 = ∇φlm(φ, Rm
1 )

7: update φ to θm with gm
1

8: obtain gm
2 = ∇θlm(θm, Rm

2 )
9: end for

10: update φ = φ − lr
∑M

m=1 gm
2

11: end for
12: initiate personalized net φ′ = φ
13: for j = 1, ..., pf do
14: update φ′ with R3

15: end for
16: end while
17: evaluate predicting performance in R4

3.3 The Client Selection Module

Feature matching is a common way to select clients, but the weight setting of
features remains challenge. Therefore, we employ asynchronous advantage actor-
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critic (A3C) [19] to train a Selector network to provide a selection strategy
according to the predicting performance (reward) and feature matching (state).
A3C is a conceptually simple and lightweight framework of deep reinforcement
learning (RL) that uses asynchronous gradient descent to optimize deep neural
network controllers, and it can significantly shorten the RL training time and
make the learning process stable.

Selector Training. The Selector Module consists of a Selector (3-layer MLP)
and a Critic (2-layer MLP). The Selector outputs actions (i.e., “guiders” selec-
tion) according to the present state modeled with parking-related features, and
the Critic is used to evaluate the selection strategies. The process of Selector
training using the A3C framework is presented in Algorithm 2. Firstly, we adopt
an off-policy strategy for sampling and obtain the rewards through a reward
function presented in (5).

r(a, Si) = λ ÷ F (a, Si) (5)

The reward r is straightforwardly measured by the testing loss of the Learner
module given the specific state Si and actions a. We set a positive constant λ
empirically as a threshold value.

After sampling, the coordinator collects all states, actions, and rewards into
a buffer. In the case of parking occupancy prediction (POP), the number of
training states is equal to the number of clients in the federation, and there will
be CM

N actions given N states and M parking lots to select. Each client utilizes
Advantage Actor-Critic (A2C) to calculate local gradients of Selector and Critic,
respectively, then update the global network’s parameters with the aggregation
of batch local gradients.

In term of Critic updating, a value-based method is employed for the Critic
updating. The estimated Value V s

π indicates the approximate expectation of
rewards in a particular state s, which is defined by (6).

V s
π = Eπ (r (ã, s)) =

1
T

T∑

t=1

r (at, s)
ρπ (at|s)
ρπ′ (at|s) (6)

where Eπ (r (ã, ŝ)) represents the expected value of the reward r for all actions
ã in a specific state ŝ using Selector π; V s

π indicates how good the Selector
could do; T is the number of actions in one state; r(at, ŝ) denotes the reward of
action at in the state ŝ; ρπ(at|ŝ) represents the probability of that the Selector
takes action at using parameter π; and ρπ′(at|ŝ) indicates the global sampling
distribution that could be omitted if it were a uniform distribution.

Then, Critic gradients of state sm can be calculated through the square error
(SE) regression between the Critic’s output V sm

critic and the observed value V sm
π .

Under the federation framework, we update the global Critic net πc using the
aggregated gradients as Eq. (7).
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π′
c = πc − β

M∑

m=1

∇πc
(V sm

π − V sm
critic)

2 (7)

In term of Selector updating, according to the idea of policy-based advantage
function [19], when the reward of an action is greater than the valuation of Critic
Vcritic, its probability goes up, otherwise, goes down. Then, the gradient of Actor
(i.e., Selector) ∇R̄s

π, can be written as (8).

∇R̄ŝ
π =

1
T

T∑

t=1

(r (at, ŝ) − Vcritc) ∇πa log ρπ (at |̂s) (8)

Similar to the updating process of Critic net, that of Selector net πa also can
leverage the aggregated local gradients as illustrated in Eq. (9).

π′
a = πa − β

M∑

m=1

∇R̄sm
π (9)

Finally, after iterative updating, the Selector would be able to find a “best”
policy that selecting a certain number of good “guiders” for the Learner module.

Algorithm 2. Selector Training: A3C - pseudocode
Require: the Learner module, parking-related features
1: assume that the numbers of clients and selected guiders are N and M , then the

amount of states and actions are N and T = CM
N respectively

2: initialize global Selector and Critic net πa and πc; model state s with features
3: for episode do
4: sample distribution π′ = π
5: sample local states and actions to global buffer
6: compute rewards with Learner and reward function
7: distribute samples (s, a, r) to corresponding member
8: for each member m do
9: freeze πa

10: dπc ← 0
11: compute V sm

π

12: obtain dπm
c by regression

13: end for
14: update πc, release πa

15: for each member m do
16: freeze πc

17: dπa ← 0
18: obtain dπm

a by advantage function
19: end for
20: update πa, release πc

21: end for
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4 Experiments and Results

In this section, we deploy the proposed method on a real-world parking occu-
pancy prediction case, and the predicting performance will be evaluated together
with other representative forecasting methods based on the same evaluation met-
rics. Moreover, the results will be analyzed to demonstrate the improvements
achieved.

4.1 Evaluation Preparation

Data Declaration. A shared dataset with a minimum resolution of 5 min was
created based on the parking occupancy data of 34 parking lots in Guangzhou
City, China, from June 1 to 30, 2018. There are four parking lots (Target 1–4) for
testing and 30 (Client 1–30) for training. The parking-related features include:
1) parking-related points of interest (POI), which are collected from Gaode API,
and the kernel density are clustered into 20 classes; 2) parking lot types, which
are divided into six categories according to the land use, namely Commercial,
Office, Residential, Hospital, Recreational, Tourism.

Dataset division: the Train-Support set and Train-Query set are (Day 1–18)
and (Day 19–24) for FOMAML pre-training; the Test-Query set is (Day 25–30)
for model performance evaluation. Expressly, we consider five data conditions
of the Test-Support set, namely complete data (Day 1–24, 24d), partial data
(Day 18–24, 6d), small data (Day 21–24, 3d), few data (Day 24, 1d), empty data
(null).

Baselines and Competitive Approaches. Several representative methods
for time-series prediction are compared. Including, 1) Fully Connected Neural
Network (FCNN): which is widely used in function approximation and general
regression problems, but it relies on feature extraction and cannot distinguish
between temporal features and spatial features; 2) Long Short-Term Memory
(LSTM) [17]: a recurrent-based method that is widely used in many time-series
prediction tasks, which is set as the baseline; 3) Gated Recurrent Unit (GRU)
[20]: a simplified LSTM structure which has advantages of rapidly computing;
and 4) Bi-directional Long Short-Term Memory (BiLSTM) [21]: a combination
of forward LSTM and backward LSTM, which is often used to model context
information in natural language processing tasks. 5) Auto-regressive Integrated
Moving Average (ARIMA) [22]: A statistical model which can be used to model
time series as long as the data or the difference of the data is stationary. 6)
Support Vector Regression (SVR) [23]: A typical machine learning model. 7) a
traditional transfer learning method named Transfer-LSTM [24] deploys LSTM
as backbone network for time-series prediction. In addition, to validate the Selec-
tor, we also evaluate the performance of FML (i.e., the Learner) which selects
“guiders” randomly. The running configuration is illustrated in Table 2.
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Table 2. Running configurations

Model Param Value Comment

* (N , M , T ) (30, 3, 4060) The number of (states, guiders, and actions)

Channel (1, 6, 1) (Input channel, sequence length, output channel)

Learning rate (0.03, 0.02, 0.05) (Pretraining, Fine-tuning, Selector training)

Max epochs (200, 400, 5000) (Pretraining, Fine-tuning, Selector training)

Optimizer BGD | Adam Pretraining | Fine-tuning & Selector training

Loss function MSE | CE Pretraining & Fine-tuning | Selector training

ARIMA (p, d, q) (2, 1, 1) Implemented on Statsmodels

SVR Kernel, epsilon RBF, 0.001 Implemented on Scikit-learn (sklearn)

* CLL, FML, transfer-LSTM and NNs.

Experiment Setting. The objective is to predict the parking occupancy rate
for the next 30 min (6 timesteps as accurately as possible in the last six days (25–
30) of June 2018. The evaluation metrics are Mean Absolute Percentage Error
(MAPE), Root Mean Squared Error (RMSE), Relative Absolute Error (RAE),
and Coefficient of Determination (R-square). Finally, All the experiments are
conducted on a Windows workstation with four NVIDIA GeForce RTX 3090
GPU, an Intel Gold 5218R Two-Core Processor CPU, and 512 G RAM. The
pretraining process takes about 20 min, but the Selector training process costs
around two weeks for the experiment. It is worth noting that for reproductivity,
the dataset and code used by this paper are shared on Github and downloadable
from the link1.

4.2 Result and Discussions

Forecasting Error. As shown in Table 3, the average metrics of compared
models in the five different data volumes (empty, few, small, partial, and com-
plete data) are summarized. We can see the methods with a knowledge transfer
learning framework are much superior to those without, and the proposed app-
roach reduces the prediction errors significantly with the highest scores in all the
four evaluation metrics, namely MAPE 4.77%, RMSE 0.0312, RAE 15.66%, and
R2 96.36%. Compared to its backbone network LSTM, CLL brings nearly 21%
extra performance improvements. Furthermore, the LSTM model using CLL out-
performs that using FML, demonstrating the effectiveness of our auto-selector.
As shown in Table 4, the selection result indicates that our selector views clients
with a closer density of POI to the target as a good “guider”. Moreover, it is
better if the client is in the same type of parking as the target.

Convergence Profile. We compare the convergence profiles of CLL and its
backbone network LSTM (i.e., the baseline), and the first-100-epochs MSE-loss
curves are given in Fig. 2. We can see that the errors at the beginning of the
curves for ALL-LSTM are smaller than that at the 100th iteration of LSTM,
indicating the advantage of ALL for knowledge extraction and propagation.

1 https://github.com/Quhaoh233/CLL.

https://github.com/Quhaoh233/CLL
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Table 3. List of average metrics of the compared models

Model RMSE (10−2) MAPE (%) R2 (%) RAE (10−2)

CLL-LSTM 3.12 4.77 96.36 15.66

FML-LSTM 3.36 5.05 95.94 16.41

Transfer-LSTM 3.76 5.79 95.33 17.72

SVR 3.90 5.83 94.31 19.01

LSTM 3.97 5.40 94.96 17.23

BiLSTM 4.10 6.24 93.71 20.23

GRU 5.27 8.19 88.10 26.24

FCNN 5.85 8.87 84.86 30.11

ARIMA 6.03 9.40 80.45 33.54

The metrics are averaged based on the result of 20 tasks (4 parking lots
× 5 data volumes).

Table 4. Parking-related features of the targets and selected clients

Feature Target1 Client1 Client5 Client11 Target2 Client5 Client8 Client10

Density of POI 12 8 14 10 18 14 17 18

Type of car parks A A A B A A A A

Feature Target3 Client3 Client14 Client25 Target4 Client12 Client17 Client27

Density of POI 4 3 2 2 11 9 12 11

Type of car parks C A C E D B C F

A: Commercial; B: Hospital; C: Office; D: Residential; E: Recreational; F: Tourism.

Fig. 2. Comparison of convergence profile between CLL-LSTM and LSTM
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Error Variance. To emphasize the stability brought by the meta-learning pre-
training and client selection, we give an illustration in Fig. 3, which reveals that
using knowledge transfer (i.e., Transfer-LSTM) can lower the error variance of
the learning model (i.e., LSTM). Further, using the CLL pre-training framework
gives the prediction model a smaller error box than using the traditional transfer
learning. The above results demonstrate that the proposed framework can sta-
bilize prediction, improving its application significance in real-world scenarios.

Fig. 3. Boxplot of the metrics in four target prediction tasks respectively, the baseline
is LSTM

In summary, the combination of FedFOMAML in model pretraining and A3C
in source selection is efficient and effective. As shown by the evaluation results,
the proposed approach has the following advantages, 1) high accuracy and scal-
ability, scoring highest in all five data groups and four evaluation metrics, with
a significant reduction of 21% in prediction error; 2) fast adaptation, with model
adaptation and convergence speed substantially improved by 102 iterations over
the model without CLL; and 3) good stability, reducing the variance of the
predictions.

5 Conclusions and Future Works

This paper proposed a knowledge transfer approach to support few-data parking
occupancy prediction, which integrated two novel ideas, namely 1) Learning
to Learn: which leveraged the Federated Meta-learning framework to transfer
multi-domains knowledge; 2) Customization: which improved the performance
via training a Selector for client selection. The evaluation results showed that the
proposed approach CLL outperformed the compared methods in three aspects:
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significant performance, fast adaptation, and more minor variances. It provided
a simple but effective way to solve small-sample parking occupancy prediction.

In the future, the work will be further enhanced:

1) To extend its application: The ideas of Customization and Learning to Learn
will be extended to more scenarios, e.g., traffic flow, density and speed pre-
diction in limited-sensing roads.

2) To consider data security: The proposed approach will be improved by inte-
grating advanced federated learning method to avoid data leakage and bridge
data islands among parking facilities.
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dation of China (62002398).
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