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ABSTRACT 

 

Along with the trend towards an autonomous transportation system (ATS), the intelligence of 

personal mobility service (PMS) can be further lifted by sensing travelers’ statuses 

comprehensively, learning behavior patterns accurately, providing travel options appropriately, 

and giving service responses timely. Such a process relies on a seamless information flow, which 

shall address data silos caused by laws and regulations about privacy. This paper proposes a 

federated architecture for PMS, called FPMS, which adopts federated learning, to provide 

personalized multi-modal options by aggregating personal data in a privacy-preserving way, and 

utilizing idle resources of personal devices within the service cluster. In general, by analyzing the 

physical objects involved, functions required, and data processed, a reference architecture of 

FPMS is designed to guide its construction in ATS effectively and efficiently. Moreover, a 

performance evaluation between FPMS and conventional centralized PMS is also presented to 

reveal the advantages of FPMS in saving service costs. 

INTRODUCTION 

The development of Intelligent Transportation System (ITS) is impelled by a series of 

emerging technologies (e.g., cloud computing, big data, and 5G), which enable the 

transformation towards the next-generation autonomous transportation system (Autonomous 

Transportation System, ATS). Specifically, in ATS, a novel workflow as of “Sensing-Learning-

Rearranging-Reacting” (Qin et al. 2019) is implemented to actively perceive status changes of 

the system, dynamically learn potential mobility demands, rationally schedule related resources, 

and rapidly provide nonintrusive services. 

As one of the core services of ATS, Personal Mobility Service (PMS) is required to 

support personalized services with the integration of multi-model travel options under the 
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integrated workflow of ATS. First, PMS needs to collaborate with different participants in the 

transportation system to comprehensively sense statuses of travelers. Second, it shall have the 

capabilities to learn macroscopic system situations and microscopic user behaviors accurately to 

assist the decision making in defining service schedules (Danaf et al. 2019). Finally, it can 

provide personalized solutions with a maximum system-saving efficiently and effectively.  

To achieve such goal, massive and diverse data shall be sensed and processed to support 

personalization and optimization. Conventionally, centralized approaches are employed in PMS, 

named centralized PMS (CPMS) (Cui et al. 2018, Logesh et al. 2018, Sun et al. 2019), in which, 

traveler's information and other related data are mostly sent and processed in the data center 

(Taivalsaari and Mikkonen 2018). Nowadays, as the service scale expand continuously to cover 

more travel modes and serve more distinctive users, CPMS may face the following challenges: 

1) Data security and privacy: As CPMS needs to continuously collect massive sensitive 

data (e.g., personal references, trajectories, and activities), the central point failure may cause the 

leakage of information, e.g., the Tesla case where vehicle location information was exposed (Liu 

et al. 2020). Moreover, since various countries issue laws and regulations (e.g., General Data 

Protection Regulation (GDRR)) in protecting personal data to advocate for the construction of 

trustworthy service platforms, many data silos may incapacitate the application of CPMS. 

2) Service performance and quality: CPMS needs to implement most of its functionalities 

in a centralized cloud, which may become the performance bottleneck to process related requests 

timely, especially, when the number of service users grow exponentially and rapidly (Ahvar et 

al. 2019).. In such case, the reliability and availability of PMS may be downgraded in providing 

a high quality service. 

3) User experience and acceptance: The heterogeneity within user preferences requires 

PMS to react with personalized options. However, due to the fact that user preferences are 

generally omitted in CPMS, current solutions can mainly generate related user menus based on 

objective metrics, such as time and cost (Bajaj et al. 2015), which may affect the user experience, 

resulting in a low acceptance rate.  

To tackle these emerging challenges, this paper, first, proposes a novel federated PMS, 

called FPMS, which incorporates a privacy-preserving decentralized mechanism, named 

federated learning (FL), to coordinate service participants in PMS (McMahan et al. 2017, Yang 

et al. 2019). Secondly, the reference architecture of FPMS in functional, logical, and physical 

views are proposed. Finally, the performance difference between FPMS and CPMS is analyzed 

through a dedicated evaluation to demonstrate the merit of FPMS in collaborating the service 

cluster consisting of massive smart devices.  

 

OVERVIEW OF PMS 

 

Personal mobility service (PMS), as one of the core services of ATS, provides personal 

travel options integrating multiple transportation modes to assist individual mobility. As shown 

in Figure 1 (a), when starting a trip, users can access the personal trip menu timely via various 

channels (e.g., smartphone app, tablet, and computer), to view and decide on route, mode, time, 

cost, etc. for personalized services. Such a process is enabled by the collaboration between the 

physical and virtual worlds as shown in Figure 1 (b). In general, users can receive personalized 

menus upon on individual requests, which are tackled through a global optimization between 

user preferences and system objectives to elevate the system saving as well as user experience. In 

general, through an inifite loop, which can constantly sense data of users and system, and 
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actively provide personalized mobility services, PMS can continuously improve the quality of 

services, and the efficiency of the system. 

 

 
 

Figure 1. (a) A classic PMS trip menu UI for smartphone; (b) A general PMS collaborating 

the physical and cyber spaces; 

 

 
 

Figure 2. (a) The workflow of CPMS; (b) The workflow of FPMS. 

 

Since such a continuous improvement mainly relies on the sensing and learning 

capabilities of PMS, two distinctive pradigms of PMS are discussed: 1) Centralized PMS 

(CPMS), which requires data to be gathered and processed in the service center as shown in 

Figure 2(a); and 2) Federated PMS (FPMS), which can process individual mobility data in a 

privacy-preserving way by uploading desensitized parameters to the service center as shown in 

Figure 2(b). 

Comparing to CPMS, FPMS can not only address the data silos caused by rules and 

regulations related to data security and privacy, but also optimize the resource utilization with in 

the service cluster formed by heterogeneous devices. In short, FPMS is a step ahead of the 

current solution as illustrated by CPMS to enable a novel way in optimizing the mobility demand 

and supply with a multi-modal information integration by using both open and private data. 
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PROPOSED ARCHITECTURE OF FPMS 

 

The construction of services in ATS relies on the analysis of physical objects 

participation, the business logic implementation and the service functions involved. Hence, to 

assist the design of FPMS in ATS, the reference architecture of FPMS in physical, functional and 

logical views are proposed and discussed in this section. 

Physical Object in FPMS. As show in Figure 3, physical objects (PO) of FPMS can be 

categorized into three groups, namely entity, module, and system: 

Entity: As the basic PO in ATS, the entity is the primary information source, which 

interact with the internal functions of the system. In general, entities in FPMS mainly contain a) 

traveler (e.g., commuters, tourists, etc.), which consumes the service; b) vehicle (e.g., private 

cars, commercial vehicles, etc.), which supports the service for the movement of travelers; and c) 

environment (e.g., temperature, humidity, etc.), which may influence the service indirectly.  

Module: As the intermediate PO between entity and system, the module provides simple 

functions embedded and utilized at the edges. In general, it consists of a) Environmental 

Monitoring Equipment (EME), which collects current surface weather conditions from sensors 

on-board; b) Roadside Monitoring Equipment (RME), which collects current road condition by 

querying fixed sensors on or near the roadway; c) Personal Information Device (PID), which 

provides the capability for travelers to receive personal travel menu. Specifically, PID can serve 

as a common interface for travelers to interact with the system through personal travel choice 

models (also called travel utility function (Azevedo et al. 2018)), which is learnt based on FL to 

generate personalized travel options.  

System: As the compound PO of the service, the system implements complex functions 

required by the service. In general, it mainly contains a) Weather System (WS), which provides 

weather information, e.g., weather forecasts, warnings of hazardous weather, etc.; b) 

Transportation Information Center (TIC), which acts as a data hub for information extraction and 

dissemination; c) Transportation Management Center (TMC), which manages multi-mode 

vehicles on the road, and diverse services under the request; d) Personalized Recommendation 

Center (PRC), which maintains the person travel choice model learnt from FL, and optimizes the 

running of system to not only maximize the overall savings but also improve the user experience 

by measuring system objectives and traveler preferences in the same time. 

 

 
 

Figure 3. The physical view of FPMS with physical objects involved. 
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Functional Orchestration in FPMS. All functions encapsulated in physical objects can 

be categorized into four domains, namely autonomous-sensing, autonomous-learning, 

autonomous-rearranging, and autonomous-reacting, as illustrated in Figure 4 (a). 

Autonomous-sensing: It includes the sensing functions for active information acquisition. 

To protect user privacy, the sensing function can work in two modes, namely a) public mode, in 

which, data, such as travel OD (Origin and Destination), dynamic traffic data, etc., with user 

consents or open accessibilities can be obtained, and b) private mode, in which, data are stored 

and processed locally at the edge, and desensitized aggregation parameters are exchanged 

between the edge and cloud.  

Autonomous-learning: It includes the learning functions, such as data fusion, portrait 

extraction, and option optimization. Similar to the data sensing modes, the learning function can 

also work under two distinctive modes. First, in private mode, as illustrated in Figure 4 (b), 

through FL, each edge can train the travel choice model locally and upload the local model to the 

cloud for a sharable global model, which can also be further customized at the edge. Second, in 

public mode, through the fusion of the multi-source heterogeneous data, the cloud can 

comprehensively obtain the running status of the system.  

Autonomous-rearranging: It includes the rearranging functions to generate personalized 

travel options automatically. In general, two steps are required for the option generation, namely 

a) general option generation, which creates global options according to the system objectives at 

the cloud, and b) personal option generation, which customized the global options according to 

user preferences at the edge.  

Autonomous-reacting: It includes the reacting functions to support the execution of 

selected travel options. In general, a feedback loop is formed by linking the reacting functions 

with the sensing functions. Hence, through a continuous iteration, the service quality and user 

experience, which measure the service level of PMS, can be consistently improved. 

 

 
 

Figure 4. (a) The function composition of FPMS; (b) Schematic diagram of the 

implementation of the federated learning in autonomous learning domain. 

 

Logical Workflow in FPMS. The logical workflow is shown in Figure 5, which 

illustrates the relationship between two connected functions through interaction flows 

exchanging data in four kinds. They are: a) open data, which is obtained from open sources, e.g., 

the road network from OpenStreetMap; b) consent data, which includes data with user consents, 
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e.g., travel OD, user feedbacks, etc.; c) desensitized data, which is desensitized from private data, 

such as user preferences; and d) operation data, which includes data generated during the 

operation of FPMS, such as fused information, global model, etc. 

According to the ATS operation logic of "sensing-learning-rearranging-reacting", FPMS 

defines eight steps in the logical flow, namely: 

Data collection: It describe the data acquisition process in sensors, roadside cameras, and 

other related sensing devices.  

Data extraction: It describes the data extraction process for each kind of data sensed for 

key information required.  

Data fusion: It describes the data fusion process to aggregate data in different modes, and 

dispatch aggregated data to related functions.  

Data analysis: It describes the data analysis process to train a travel choice model and a 

global travel optimization model.  

Option generation: It describes the option generation process by using the global travel 

choice model and travel optimization model at the cloud. 

Option personalization: It describes the option personalization process to customize 

global options according to user preferences at the edge. 

Option execution: It describes the option execution process to assist travelers during their 

trips through interactive user interfaces.  

Option feedback: It describes the option feedback process to collect user experience 

information for continuous improvement.  

 

 
 

Figure 5. The general work flow of FPMS in a logical view. 

 

THE PERFORMANCE EVALUATION 

 

The variation between CPMS and FPMS is mainly reflected by the learning functions, as 

they are implemented according to centralized and decentralized approaches, respectively. 

Hence, a common training setting is defined to reveal the performance differences in model 

training time and resource consumption. 
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Evaluation Setting. Firstly, the Swissmetro dataset (Bierlaire et al. 2001) is utilized as 

the common training data, which is collected in Switzerland in 1998 with 10,729 samples 

reflecting the travel choice on options of private car, Swwissmetro, and train with three 

attributes, i.e., travel cost, time, and distance. 

Secondly, as for the training procedure, one PRC (Personalized Recommendation Center) 

and 100 PIDs (Personal Information Devices) are visualized. Moreover, the number of PIDs that 

participate and related data processed in a learning round will increase gradually as defined in 

Table 1. Specifically, the initial number of PID is 1, and it increases at a rate of 𝑃. Besides, the 

local dataset of PID contains an initial proportion 𝑁 about 1% to 5%, and grows with a defined 

rate 𝐼 from 1% to 2%. 

Finally, the Gibbs sampling (Danaf et al. 2019) is applied in the cloud server and each 

PID for parameter fitting to train the model. 

 

Table 1. The common constraints used in assigning data. 

 

Variable Description Value 

𝐷min Minimum amount of data 50 

𝐷max Maximum amount of data 180 

𝑃min Minimum number of newly added PID per round 1% 

𝑃max Maximum number of newly added PID per round 10% 

𝑁min Minimum portion of initialized data 1% 

𝑁max Maximum portion of initialized data 5% 

𝐼min Minimum portion of new data per round 1% 

𝐼max Maximum portion of new data per round 2% 

 

Evaluation Indicators. The training of the model requires multiple iterations with the 

increase of PID and related data until a steady state is reached with a desired accuracy. Such that, 

the training time and resource consumption of each training round in the first 150𝑡ℎ rounds are 

utilized as the evaluation indications.  

In general, the computation and communication cost are directly associated with the size 

of the data sample processed in each learning round. Hence, let 𝑖 and 𝑘 index the PID and the 

round of iteration, respectively. Then, in the 𝑘𝑡ℎ learning round, the size of the sample contained 

by the 𝑖𝑡ℎ PID is denoted as 𝑉𝑖,𝑘, and the size of the sample utilized by the PRC of CPMS is 

marked as 𝑉𝑠𝑢𝑚,𝑘, which is the sum of 𝑉𝑖,𝑘. It is noting that PRC of CPMS will not process any 

data sample from PIDs.  

Computation: As for the computation phase, the aggregation process in FPMS is ignored, 

as FedAvg (McMahan et al. 2017) is utilized, whose complexity is 𝑂(1). Let 𝑓𝑖 and 𝑓𝑐 denote the 

CPU frequency of the 𝑖𝑡ℎ PID and the PRC respectively, and 𝑄 represents the training workload 

per sample. According to the measurement proposed in (Dinh et al. 2020), the computation time 

and energy consumption of PRC under CPMS, and the 𝑖𝑡ℎ PID under FMPS in the 𝑘𝑡ℎ round can 

be expressed as shown in Equations 1 to 4. 
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𝑇𝑘,𝑃𝑅𝐶
𝑐𝑚𝑝,𝐶𝑃𝑀𝑆

=
𝑄𝑉𝑠𝑢𝑚,𝑘

𝑓𝑐
                                                         (1) 

 

𝐸𝑘,𝑃𝑅𝐶
𝑐𝑚𝑝,𝐶𝑃𝑀𝑆

= 𝜀𝑐𝑄𝑉𝑠𝑢𝑚,𝑘𝑓𝑐
2                                                  (2) 

 

 𝑇𝑖,𝑘,𝑃𝐼𝐷
𝑐𝑚𝑝,𝐹𝑃𝑀𝑆

=
𝑄𝑉𝑖,𝑘

𝑓𝑖
                                                           (3) 

 

𝐸𝑖,𝑘,𝑃𝐼𝐷
𝑐𝑚𝑝,𝐹𝑃𝑀𝑆

= 𝜀𝑐𝑄𝑉𝑖,𝑘𝑓𝑖
2                                                     (4) 

 

Where, 𝜀𝑐 is the computation coefficient correlated to the hardware configuration. 

Communication: As for the communication phase, the cost in the downlink is ignored, as 

it is negligible compared to the cost in the uplink (Dinh et al. 2020). Assume that 𝑟𝑖 defines the 

uploading rate of the 𝑖𝑡ℎ PID, 𝑆𝑚 represents the size of the model parameter to be uploaded, and 

𝑆𝑠 illustrates the record size of a sample, according to the measurement proposed in (Yu and Li 

2021), the communication time 𝑇 and energy consumption 𝐸 of CPMS and FPMS in the 𝑘𝑡ℎ 

round can be expressed according to following formulas shown in Equations 5 to 8. 

 

 𝑇𝑖,𝑘,𝑃𝐼𝐷
𝑐𝑜𝑚,𝐶𝑃𝑀𝑆 =

𝑆𝑠(𝑉𝑖,𝑘−𝑉𝑖,𝑘−1)

𝑟𝑖
                                                     (5) 

 

 𝐸𝑖,𝑘,𝑃𝐼𝐷
𝑐𝑜𝑚,𝐶𝑃𝑀𝑆 =

𝜀𝑡𝑆𝑠(𝑉𝑖,𝑘−𝑉𝑖,𝑘−1)

𝑟𝑖
2

𝑟𝑖
𝐵

−1
                                             (6) 

 

 𝑇𝑖,𝑘,𝑃𝐼𝐷
𝑐𝑜𝑚,𝐹𝑃𝑀𝑆 =

𝑆𝑚

𝑟𝑖
                                                           (7) 

 

 𝐸𝑖,𝑘,𝑃𝐼𝐷
𝑐𝑜𝑚,𝐹𝑃𝑀𝑆 =

𝜀𝑡𝑆𝑚

𝑟𝑖
2

𝑟𝑖
𝐵

−1
                                                      (8) 

 

Where, 𝜀𝑡 is the communication coefficient, and 𝐵 is the wireless bandwidth. 

As a result, the total time and energy consumption per round is expressed as presented in 

Equations 9 to 12. 

 

𝑇𝑘
𝑠𝑢𝑚,𝐶𝑃𝑀𝑆 = 𝑇𝑘,𝑃𝑅𝐶

𝑐𝑚𝑝,𝐶𝑃𝑀𝑆
+ 𝑚𝑎𝑥

𝑖∈𝑛
 𝑇𝑖,𝑘,𝑃𝐼𝐷

𝑐𝑜𝑚,𝐶𝑃𝑀𝑆
                                         (9) 

 

𝐸𝑘
𝑠𝑢𝑚,𝐶𝑃𝑀𝑆 = 𝐸𝑘,𝑃𝑅𝐶

𝑐𝑚𝑝,𝐶𝑃𝑀𝑆
+ ∑  𝑛

𝑖 𝐸𝑖,𝑘,𝑃𝐼𝐷
𝑐𝑜𝑚,𝐶𝑃𝑀𝑆

                                         (10) 

 

𝑇𝑘
𝑠𝑢𝑚,𝐹𝑃𝑀𝑆 = 𝑚𝑎𝑥

𝑖∈𝑛
 {(𝑇𝑖,𝑘,𝑃𝐼𝐷

𝑐𝑚𝑝,𝐹𝑃𝑀𝑆
+ 𝑇𝑖,𝑘,𝑃𝐼𝐷

𝑐𝑜𝑚,𝐹𝑃𝑀𝑆)}                                 (11) 

 

𝐸𝑘
𝑠𝑢𝑚,𝐹𝑃𝑀𝑆 = ∑  𝑛

𝑖 {(𝐸𝑖,𝑘,𝑃𝐼𝐷
𝑐𝑚𝑝,𝐹𝑃𝑀𝑆

+ 𝐸𝑖,𝑘,𝑃𝐼𝐷
𝑐𝑜𝑚,𝐹𝑃𝑀𝑆)}                                     (12) 

 

Finally, the value of the related hyperparameters are defined in Table 2 to simulate a 

dynamic environment with PIDs, whose computation and communication capabilities vary 

among each other.  
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Table 2. The list of hyperparameters used in the evaluation. 

 

Variable Description Value 

𝑄 Training workload per sample 10 

𝜀𝑐 Computation coefficient 1 

𝑓𝑐 CPU frequency of the PRC 0.5-2.5 GHz 

𝑓𝑖 CPU frequency of the 𝑖th  PID 3 GHz 

𝑉𝑖,𝑘 Sample size of the 𝑖𝑡ℎ PID under FPMS 
According to the 

evaluation setting 

𝑉𝑠𝑢𝑚,𝑘 Sample size of the PRC under CPMS 
According to the 

evaluation setting 

𝑆𝑚 Model size 0.01 kb 

𝑆𝑠 Data size per sample 0.07 kb 

𝐵 Bandwidth 1 MHz 

𝜀𝑡 Communication coefficient 50 

𝑟𝑖 Uploading rate of the 𝑖𝑡ℎ PID under FPMS 100 − 1000 kb/s 

 

Evaluation Results. First, the training time consisting of computation and 

communication time in the first 150 rounds is analyzed for CPMS and FPMS, respectively. Due 

to the fact that FPMS can utilize the idle resources of each PID for local model training, and 

requires only the transmission of model parameters through the network, FPMS can maintain a 

much lower time in computation and communication as shown in Figure 6 (a) and (b), 

respectively. Moreover, even though the communication time of CPMS overcomes FPMS when 

the training gets stabilized, FPMS can still significantly reduce the overall training time as 

illustrated by Figure 6 (c), as the computation time required for the training is much larger than 

the one for communication. 

 

 
 

Figure 6. Evaluation results of training time for CPMS and FPMS. 

 

Second, the resource consumption is also analyzed. Similar to the training time, FPMS 

consumes less computation and communication resources than CPMS as shown in Figure 7 (a) 

and (b), since CPMS requires the data to be gathered and processed in a centralized manner. 

Moreover, even though the overall consumption of CPMS decreases as less data are required to 

be transmitted, FPMS can still remain an obvious advantage in optimizing the utilization of 

related resources in the service cluster as shown in Figure 7 (c). 
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Figure 7. Evaluation results of resource consumption for CPMS and FPMS. 

 

In summary, FPMS outperforms CPMS with significantly reduced training time and 

resource consumption, which shows its merits in utilizing service resources efficiently and 

effectively to train a global model with data protected. 

CONCLUSION 

Intelligent transportation system is evolving under the influence of emerging technologies 

and diversified demands towards a novel paradigm, called Autonomous Transportation Systems 

(ATS), which can control system operations and provide user services with less human 

interventions. This paper discusses the personal mobility service of ATS under the premises of 

data security and privacy, which incapacitates the centralized PMS (CPMS), and promotes the 

federated PMS (FPMS) in a decentralized manner. To illustrate how CPMS is transferred to 

FPMS, a reference architecture is proposed with three views to define the physical objects that 

participated, the business logic implemented, and the service functions involved in FPMS.  

Additionally, through a performance evaluation between CPMS and FPMS, the merits of 

adopting federated learning in supporting personal mobility in a data-preserving way were 

analyzed. Compared to CPMS, FPMS can maintain a higher training speed with less resource 

consumption in terms of communication and computation.  

As for the future, FPMS according to the proposed architecture will be implemented with 

1) a multi-modal data integration mechanism to accommodate different kinds of data such as 

public and private data; and 2) an FL-based travel recommendation algorithm to orchestrate 

various heterogeneous devices in a asynchronous manner.  
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