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Abstract: Driven by emerging technologies such as edge computing and Internet of Things (IoT),
recent years have witnessed the increasing growth of data processing in a distributed way. Federated
Learning (FL), a novel decentralized learning paradigm that can unify massive devices to train a
global model without compromising privacy, is drawing much attention from both academics and
industries. However, the performance dropping of FL running in a heterogeneous and asynchronous
environment hinders its wide applications, such as in autonomous driving and assistive healthcare.
Motivated by this, we propose a novel mechanism, called Fed2A: Federated learning mechanism in
Asynchronous and Adaptive Modes. Fed2A supports FL by (1) allowing clients and the collaborator
to work separately and asynchronously, (2) uploading shallow and deep layers of deep neural
networks (DNNs) adaptively, and (3) aggregating local parameters by weighing on the freshness of
information and representational consistency of model layers jointly. Moreover, the effectiveness
and efficiency of Fed2A are also analyzed based on three standard datasets, i.e., FMNIST, CIFAR-10,
and GermanTS. Compared with the best performance among three baselines, i.e., FedAvg, FedProx,
and FedAsync, Fed2A can reduce the communication cost by over 77%, as well as improve model
accuracy and learning speed by over 19% and 76%, respectively.

Keywords: federated learning; asynchronous federated learning; adaptive uploading; adaptive
aggregation

1. Introduction

The number of autonomous vehicles, IoT (Internet of Things) devices, mobile phones,
and various sensors has increased significantly because of the fast development of Artificial
Intelligence, ICT (Information and Communication Technology), electronics, and other
advanced technologies. Along with this trend, massive, distributed, and valuable data are
generated and become sensitive to be collected and processed at the data center. In this
context, a decentralized approach, called Federated Learning (FL), is proposed to train a
global model by collaborating with various clients in a privacy-preserving way [1]. In FL,
learning participants can train and upload local models by utilizing their local resources
(i.e., data, computation, and communication capabilities). Meanwhile, the collaborator can
receive and aggregate local models to build a global model iteratively. Hence, sensitive
data are protected without sharing them explicitly, and distributed computing powers
are jointly utilized to ease the workload of central servers. As a key enabler of intelligent
services, FL has already been applied in various domains [2], e.g., (1) in transportation to
enable autonomous vehicles to behave in a smarter way while protecting user trajectories
and other sensitive information [3]; (2) in healthcare to train disease prediction models
while securing patient data [4]; (3) in manufacturing to detect intrusions or anomalies while
utilizing sensed data of edge devices [5].

However, existing research and applications of FL focus more on the synchronous
mode. It ensures all clients work at the same pace. Such that, stragglers may impede
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the whole training process. On the contrary, in the asynchronous mode, clients can work
individually, and the collaborator can start the model aggregation once the pre-defined
condition is met without waiting [6,7]. For example, to train an image classification model
by collaborating massive mobile phones under the FL framework, since these devices vary
in their local resources, such as local data sizes, computing capabilities, battery levels,
and network situations (4G, 5G, WiFi, etc.), there may exist some incompetent clients,
i.e., the stragglers, requiring much longer learning time, or failing to complete the task.
In synchronous FL, the stragglers become the performance bottleneck of FL to support
such a learning task. Whereas, in asynchronous FL (AFL), the influence of stragglers can
be remedied, as each client can train and upload the local model separately without any
suspension. Such that, AFL is more suitable to support services consisting of devices with
heterogeneous capabilities.

Due to such advantages, AFL is now in the spotlight, but it encounters two critical
challenges [8–10], namely:

• How to reduce the communication cost without damaging the overall learning performance?
Since the communication capacities of AFL clients are limited, unstable, and change-
able over time, and an incaution reduction causing the loss of vital information may
impact the overall learning performance, it becomes critical to optimize the usage of
communication resources of learning participants rationally.

• How to improve the model performance by harnessing temporal and informative attributes
of local parameters? Since local parameters are subject to Non-iid (Non independent and
identically distributed) data, and their created and received time may vary, it becomes
essential to address these variances during the model aggregation process comprehensively.

To tackle the challenges, several strategies have been proposed, e.g., a layer-wise
model update strategy and a temporally weighted aggregation strategy are designed
to train DNNs (Deep Neural Networks) [11]. Even though these solutions can reduce
communication costs, side effects are observed that the model accuracy is decreased and
its growth curve becomes vibrated. Two limitations are responsible for these solutions,
namely, (1) the proper uploading frequencies of different layers have not been studied
in-depth, hence the missing of some valuable information deteriorates the model accuracy,
and (2) the aggregation procedure utilizes only temporal or informative attributes without
measuring them jointly, hence, related biases unsteady the learning process.

In this context, a novel mechanism is required to reduce communication costs without
compromising learning performance by optimizing the layer uploading strategy, and in the
meantime, improve learning performance by harnessing both the temporal and informative
heterogeneity of local parameters. To fill this gap, this paper proposes Fed2A: Federated
learning mechanism in Asynchronous and Adaptive modes. Specifically, first, it designs
and implements a two-stage asynchronous learning procedure, including:

• Local uploading stage. AFL clients can work to train local models and upload them
to the AFL collaborator concurrently and individually;

• Global aggregation stage. The AFL collaborator can receive local parameters from
AFL clients continuously while aggregating received parameters simultaneously.

Moreover, it proposes and integrates three adaptive strategies to support the local
uploading and global aggregation stages to train DNNs, namely:

• PLU: Periodic layer uploading strategy. It divides the total global rounds into multiple
periods, and parameters of deep layers will only be uploaded in specific rounds of a
period to save communication costs.

• TVW: Time variety weighting strategy. It creates temporal weights reflecting the dif-
ference between the created and received times of local parameters to assist the
model aggregation.

• RCE: Representational consistency enhancing strategy. It measures the informative im-
portance for each received layer of DNNs in a global round and uses it to steer the
aggregation direction.
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Accordingly, the main contributions of this paper are summarized as follows:

• We design a novel AFL mechanism, called Fed2A, to support distributed learning in
heterogeneous environments with communication cost reduced and model perfor-
mance improved, as Fed2A can support the local uploading and global aggregation
stages asynchronously and adaptively.

• We optimize the local uploading stage by splitting the uploading of deep and shallow
layers and reducing the uploading frequency of deep layers appropriately.

• We enhance the global aggregation stage by designing delay functions to punish stale
models, and utilizing representational consistency between local and global layers to
guide the learning direction.

• We conduct holistic experiments to evaluate Fed2A based on three standard datasets
(i.e., FMNIST, CIFAR-10, and GermanTS). Compared to three state-of-the-art baselines
(i.e., FedAvg, FedProx, and FedAsync), Fed2A can (1) reduce the communication cost
by about 77.30%, (2) improve the model accuracy by about 19.20%, and (3) boost the
training speed by about 76.62% simultaneously and respectively.

The remainder of this paper is organized as follows. First, Section 2 summarizes
related work about communication cost reduction and model aggregation optimization.
Second, Fed2A is presented and evaluated in Sections 3 and 4, respectively. Finally, Section 5
concludes the work and sketches the future research directions.

2. Related Work

To improve the overall performance of AFL, communication cost reduction strategies
in the local uploading stage, and aggregation weights optimization strategies addressing
temporal or informative heterogeneity issues in the global aggregation stage are studied.

2.1. Communication Cost Reduction

DNN tends to have massive parameters to be trained and transmitted in AFL. In gen-
eral, three methods, i.e., model compression, frequency reduction, and training split, are
widely discussed to reduce the consumption of limited communication resources of clients.

First, for model compression, Caldas et al. [12] introduced lossy compression and fed-
erated dropout strategies to decrease the number of uploaded parameters; Wang et al. [13]
utilized singular value decomposition to discover and transfer only useful gradients; Sat-
tler et al. [14] and Asad et al. [15] designed sparse compression schemes to reduce redundant
parameters; Lu et al. [16] proposed threshold-based compression strategies to only transmit
the qualified gradients.

Second, regarding frequency reduction, some scholars increased the local epochs
for fast model convergence, in turn, to reduce the communication frequency. However,
these kinds of solutions consume more computing powers [17]. To avoid that, several
uploading frequency reduction strategies were studied by utilizing cross-entropy loss [18]
or convergence speed feedback [19,20].

Finally, as for the last method, each client can train and upload a subset of the model
(i.e., the shallow and deep layers can be split) to save related costs. Kang et al. [21], for
example, distributed a model according to data sizes of clients, and Wang et al. [22] divided
the global model into branches according to sample categories.

2.2. Aggregation Weights Optimization

Since the model parameters from clients are uploaded asynchronously with various
latencies, several temporally weighted strategies were proposed to tackle such an issue.
For example, Xie et al. [7] designed an optimization algorithm, called FedAsync, which
can update the global model right after receiving an arbitrary local model, and uses a
mixing hyperparameter related to the training start and received time of the local model to
balance the weights applied to the current global model and received local model during
the aggregation; Chen et al. [11] also proposed a temporally weighted aggregation strategy
based on the assumption that newer parameters deserve larger weights.
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Moreover, since data quality varies among distributed AFL clients, several informative
weights are designed to boost model performance. For example, Wang et al. [23] proposed
a reputation-based strategy to assign weights by estimating the contributions of clients;
Chen et al. [24] presented a quantization-driven algorithm to allocate weights by using
the instantaneous quantization errors reported by clients; Wang et al. [25] designed an
attention-based strategy to optimize aggregation weights by avoiding the imbalance in
local models; Li et al. [26] introduced an empirical risk-based scheme to adjust weights
automatically by evaluating reliability and corruption levels of local data.

In summary, as summarized in Table 1, model compression, frequency reduction,
and training split are widely used to reduce the communication consumption that occurs
during the interaction between learning participants and the collaborator. Second, several
temporally and informatively weighted strategies are also studied to optimize the aggre-
gation process for a performance boost. However, these strategies are generally with side
effects such as compromised model performance, and lack of comprehensiveness. Hence,
a novel mechanism that can not only reduce communication costs significantly but also
improve learning performance thoroughly needs to be studied, which is the main purpose
of this paper.

Table 1. The overview of reviewed works (#, not supported).

Related Work Communication Cost
Reduction

Aggregation Based on
Temporal Attributes

Aggregation Based on
Informative Attributes

Caldas et al. [12] Dropout compression # #
Wang et al. [13] SVD compression # #
Sattler et al. [14] Sparse compression # #
Asad et al. [15] Sparce compression # #

Lu et al. [16] Threshold compression # #
Zhu et al. [17] Frequency reduction # #

Huang et al. [18] Frequency reduction # #
Wang et al. [19] Frequency reduction # #
Wang et al. [20] Frequency reduction # #
Kang et al. [21] Training split # #
Wang et al. [22] Training split # #

Xie et al. [7] # Exp/polynomial/
inverse/hinge delay function #

Chen et al. [11] Frequency reduction and
training split Exp delay function #

Wang et al. [23] # # Reputation-based
Chen et al. [24] # # Quantization-driven
Wang et al. [25] # # Attention-based

Li et al. [26] # # Empirical risk-based

Fed2A (Proposed) Frequency reduction and
training split

Exp/inverse/log delay
function

Representational
consistency-based

3. Introduction of Fed2A

This section first describes the problem formulation and then introduces the asyn-
chronous learning procedure implemented in Fed2A. Moreover, three adaptive strategies
of Fed2A, i.e., PLU, TVW, and RCE, are presented. Finally, Fed2A, with the three strategies
utilized together, is discussed. For the sake of readability, the notations used in this section
are summarized in Table 2.
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Table 2. The notations used in Fed2A.

Notation Description

Dk The local dataset of client k
R The total global rounds
P The total rounds in a PLU period
D The last D rounds in a PLU period to upload deep layers
s The parameter size of shallow layers
d The parameter size of deep layers

ωt+1 The global model of the (t + 1)th global round
ωk The local model of client k
ωl

k The layer l of client k
K The total local models received in a global round
tk The generated timestamp of client k
nk The data size of client k
nt The total data size of the tth global round
S The stimulus set
m The total stimuli
L The total number of layers of trained DNN

vl(si) The output of layer l on stimulus i
Ol The output dimension of layer l

rcl
k,t The representational consistency of layer l for client k in round t

3.1. Problem Formulation

We consider applying AFL in heterogeneous environments to train DNNs. Assume
that there are total K0 clients and one collaborator, and each client k trains a DNN with total
L layers on its local dataset Dk with the size of nk = |Dk|. After client k receives a global
model wtk from the collaborator in global round tk, it will train the local model wk by using
a predefined optimization function f , such as SGD (stochastic gradient descent), as shown
by Formula (1).

wk ← f (wtk , Dk) (1)

After the local training, wk will be uploaded to the collaborator. Once an aggregation
trigger is satisfied, such as K, updates are received in the tth round, the collaborator will
update the global model according to (2), where αk is the aggregation weight of client k.

wt+1 =
K

∑
k=1

(αk × wk) (2)

In general, once the wk is trained and uploaded, the core challenge is finding how
to optimize the coefficient αk adaptively in each learning round to update the new global
model efficiently and effectively. We identify the following two main factors that affect αk:

• Temporal heterogeneity. It stands for the difference between the created time of wk
at the client-side (tk) and the received time at the collaborator-side (t) to measure the
staleness of the local model.

• Informative heterogeneity. It stands for the difference between local model wk and
the latest global model wt, and intuitively, such a divergence needs to be measured
per layer.

Hence, we rewrite Formula (2) into Formula (3), where g(·) is the function to compute
the aggregation weight for each layer of client k in a round by addressing both temporal
and informative heterogeneities.

wt+1 =
L

∑
l=1

K

∑
k=1

(αl
k × wl

k), αl
k ← g(tk, t, wl

t, wl
k) (3)
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Therefore, this paper investigates how to upload and aggregate local layers adaptively
with heterogeneous attributes for AFL.

3.2. Two-Stage Asynchronous Learning Procedure of Fed2A

As illustrated in Figure 1, it contains two major stages, namely:

• Local uploading stage on the client side. The AFL clients can work individually with more
flexibility, which means they can start the training and uploading of local models
based on their own decisions, and the synchronous step defined in conventional FL
methods is no anymore necessary;

• Global aggregation stage on the collaborator side. The AFL collaborator can continuously
receive parameters from AFL clients. Moreover, it also can start the aggregation once
a predefined condition is satisfied, e.g., a certain number of updates are received or
the maximum waiting time is reached. Finally, a new global round starts when the
updated global model is broadcasted to the clients, who have made contributions.

Figure 1. The two-stage asynchronous learning procedure and the allocation of the three adaptive
strategies of Fed2A. (A) Local Uploading Stage to train and upload local models according to PLU,
and (B) Global Aggregation Stage to aggregate received local models according to TVW and RCE.

In this context, Fed2A can (1) alleviate the adverse effects of stragglers compared
with the synchronous mode, since the aggregation is unblocked; and (2) maintain a stable
learning process compared with canonical asynchronous modes, such as FedAsync [7],
since more local models can be aggregated in a global round for a more significant update.

Moreover, to reduce communication cost and improve model performance simultane-
ously under such an asynchronous mode, Fed2A also consists of three adaptive strategies
for local uploading and global aggregation, which are discussed in the following subsection.

3.3. Adaptive Uploading and Aggregation Strategies of Fed2A

There are three adaptive strategies, namely, PLU for local updating, and TVM and
RCE for global aggregation.

3.3.1. PLU: Periodic Layer Uploading Strategy

It is designed based on the observation that the optimization of the update frequency
of shadow and deep layers of DNN can reduce the overall communication cost of FL
without damaging the model performance [11]. On the one hand, shallow layers (such
as convolutional layers) learn more general features (more critical to the global model)
from the training data, while having fewer learning parameters. On the other hand, deep
layers (such as fully connected layers) extract ad hoc features closely related to specific data
distribution, hence having many more parameters to train. In this context, as shown in
Figure 1, the PLU, denoted as PLU(R, P, D), divides total R global rounds into R

P learning
periods, and in each learning period, shallow layers will be transmitted in the all P rounds
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to learn general features consistently, while deep layers will only be uploaded in the last
D rounds to update ad hoc features periodically. Note that since deep layers need to be
initialized at the beginning, PLU allows all layers to be uploaded to learn the global model
in the first learning period.

Moreover, assume that shallow and deep layers have s and d parameters respectively,
accordingly, the total communication cost by using PLU is (R× s + (P− D)× d + R

P × D× d).
Compared to the conventional scenario, whose cost is (R × (s + d)), the cost reduction is
( R × D × d

P − (P− D) × d).
Finally, since d is the major component of communication cost, the cost reduction can

be considerable when D is smaller than P. However, if the uploading frequency of deep
layers is too low, the necessary information will be lost to impact the performance of the
global model, which is not ideal. Hence, PLU should select a proper set of P and D to
achieve an equilibrium, where the saving on communication cost and the improvement on
model performance are both maximized from the system point of view. The analysis of
PLU can be found in Section 4.2.

3.3.2. TVM: Time Variety Weighted Strategy

As shown in Figure 2, since each AFL client can join the learning process freely,
the collaborator, which aggregates local parameters for the global model, may receive
local parameters with various timestamps. To mediate the temporal variances under
such circumstances, a time variety weighted (TVW) strategy is proposed to process local
parameters of AFL clients with a temporal weight created according to the assumption
that the latest parameter shall have the highest weight among received parameters as it
contains the latest information.

Figure 2. The schematic diagram of TVW.

Accordingly, TVW is defined by Formula (4), where K denotes the number of clients
with their parameters received by the collaborator in the tth global round; nk is the data
size of the kth client; nt is the data size of all clients participating in the tth global round; ωk
denotes the local model received from the kth client; ωt+1 denotes the aggregated global
model after the tth round; TWk,t is the normalized temporal weight of the kth client in the
tth global round calculated by the AFL collaborator; TWk,t is the original weight, whose
sum is TWt; e stands for the natural logarithm; and tk denotes the global round, in which the
parameter of the kth client is generated. Note that three typical value decreasing functions



Electronics 2022, 11, 1393 8 of 17

f (t, k), i.e., exponential function, inverse function, and logarithmic function, can be used to
calculate the weights.

ωt+1 ←
K

∑
k=1

(TWk,t ×ωk)

TWk,t =
TWk,t
TWt

TWk,t =
nk
nt
× f (t,k)

f (t)

TWt = ∑K
k=1 TWk,t

f (t, k) =


( e

2 )
−(t−tk), exp

1
t−tk+1 , inv

1
log(t−tk+1)+1 , log

f (t) = ∑K
k=1 f (t, k)

(4)

In summary, TVW aggregates model parameters of clients received in an asynchronous
global round by manipulating a normalized weight, whose value decreases according to
the temporal difference between the timestamps of two rounds, when the local parameters
are learned and received. As for the performance of TVW, it is analyzed in Section 4.3.

3.3.3. RCE: Representational Consistency Enhancing Strategy

In general, each layer of local models may make distinctive contributions to the global
model, e.g., the difference between shallow and deep layers of DNN [11]. Since (1) layers
of the global model are updated by aggregating corresponding layers of local models
uploaded from AFL clients, and (2) the importance of layers in local models may vary
from each other, instead of aggregating them averagely, a Representational Consistency
Enhancing (RCE) strategy is designed to highlight essential layers of local models by
comparing the differences with their corresponding layers of current global model in use.

As shown in Figure 3, such a difference can be measured based on multivariate
analysis techniques, such as representational similarity analysis [27], which can compare
the representational consistency [28] of layers. Specifically, a representational dissimilarity
matrix (RDM) can be computed to characterize the internal stimulus representations of
layers based on pairwise response differences in a learning round. Note that if two stimuli
are represented similarly in a given layer, then the distance between their outputs will
be small.

Figure 3. The schematic diagram of RCE.
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First, for a given set of stimuli S = {s1, s2, . . . , sm}, a layer l, denoted as vl , can be
defined as a vector of outputs on S by Formula (5).

vl = (vl(s1), vl(s2), . . . , vl(sm)) (5)

Second, a symmetrical RDM (m × m) storing (m2

2 − m) unique pairwise distances
between two representations of the layer l to the set of stimuli S, e.g., the distance between
vl(si) and vl(sj), can be calculated by Formula (6). As for the pairwise distance, it can be
measured according to the correlation distance (Formula (7)), cosine distance (Formula (8)),
or Euclidean distance (Formula (9)).

RDM[i, j] = distance(vl(si), vl(sj)), i, j ≤ m (6)

corre[vl(si), vl(sj)] = 1−
Cov(vl(si), vl(sj))√
D(vl(si))

√
D(vl(sj))

(7)

cos[vl(si), vl(sj)] =
vl(si) · vl(sj)

|vl(si)||vl(sj)|
(8)

d[vl(si), vl(sj)] =

√√√√ Ol

∑
o=1

(vl(si)o − vl(sj)o)2 (9)

Third, the representational consistency rcl of the lth layer in the global model and the
local model can be calculated according to Formula (10), where uglo

l and uloc
l are the upper

triangle of the corresponding RDMs.

rcl(u
glo
l , uloc

l ) = ρ2
uglo

l ,uloc
l

= (
Cov(uglo

l , uloc
l )

σ
uglo

l
σuloc

l

)2 (10)

Finally, a layer-wise aggregation is implemented according to the representational
consistency rc. Accordingly, the layers of local models are aggregated separately by using
rc as the adaptive weight (representing the informative richness of a layer) to form the
global models. The evaluation of RCE is summarized in Section 4.3.

3.4. Fed2A: The Integrated Form

The integrated form of Fed2A utilizes the uploading strategy PLU, and two aggrega-
tion strategies TVW and RCE simultaneously to achieve optimal performance. Specifically,
Algorithm 1 shows the workflow of Fed2A in the integrated form. First, AFL clients are
initialized by PLU, which defines the uploading frequency of deep and shallow layers.
Second, required parameters such as ωk , tk and nk are computed and then transmitted from
client k to the collaborator. Third, the two adaptive weights in TVW and RCE of client k will
be computed by the collaborator based on received parameters. Finally, the collaborator will
calculate the adaptive weight TW_rcl

k,t for each layer and use it to update the global model.
Note that the computation of adaptive weights requires no sensitive information, hence,
user privacy can be guaranteed. The performance of Fed2A is evaluated in Section 4.4.
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Algorithm 1 Fed2A: Integrated with PLU, TVW, and RCE.

Initialization: PLU(R, P, D) are defined.
In a total of R rounds, there are R

P periods;
In each period:
(1) Shallow layers are uploaded in all P rounds;
(2) Deep layers are uploaded in the last D rounds.

PART 1: : Executed in each AFL client
1: for each client k ∈ K in parallel do
2: ωk is trained based on local data
3: tk ← current timestamp o f the kth client
4: nk ← data size o f the kth client
5: end for
6: Uploading ωk, tk and nk to the collaborator

PART 2: : Executed in the AFL collaborator
1: Receiving ωk, tk, and nk unblocking
2: while The trigger for a global aggregation is true do . e.g., K local models are received.
3: t← current timestamp, as the current global round
4: Calculating TWk,t according to Formula (4)
5: for k ∈ K do
6: for l ∈ L do
7: rcl

k,t calculated by Formula (10)
8: TW_rcl

k,t ← TWk,t × rcl
k,t

9: end for
10: end for
11: for k ∈ K do
12: for l ∈ L do
13: TW_rcl

k,t ←
TW_rcl

k,t

∑K
k=1(TW_rcl

k,t)
. normalization

14: end for
15: end for
16: for l ∈ L do
17: wl

t+1 ← ∑K
k=1(TW_rcl

k,t × wl
k) . wl

k ∈ wk.
18: end for
19: end while

4. Evaluation and Discussion

In this section, first, common settings, such as used datasets, model to be trained,
selected baselines, and evaluation metrics, are discussed. Second, the effectiveness and
efficiency of PLU, TVW, RCE are evaluated respectively. Finally, the overall performance of
Fed2A is revealed.

4.1. Common Settings

First, as shown in Figure 4, 30 clients are virtualized and deployed to participate in the
learning process to learn a CNN model. Specifically, the CNN model is designed with two
stacked convolution layers and two fully connected layers, and trained separately based on
three standard datasets. Detailed training configuration for each dataset is listed as below:

• FMNIST (Fashion MNIST; https://github.com/zalandoresearch/fashion-mnist; (ac-
cessed on 1 February 2022) comprises 60,000 training images and 10,000 testing images
with 10 labels. The data size of each image is 28× 28× 1. To reflect the non-IID
and unbalanced data distribution, each client possesses 1500–2500 training samples
with 2–6 classes. The two convolution layers have 64 and 128 channels, respectively,
followed by a 2× 2 max-pooling layer. The two fully connected layers have 256 and
512 units, respectively, followed by a softmax unit as the output layer.

https://github.com/zalandoresearch/fashion-mnist
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• CIFAR-10 (https://www.cs.toronto.edu/kriz/cifar.html; (accessed on 1 February
2022) contains 50,000 training samples and 10,000 testing samples with 10 labels.
Each sample is a 32× 32× 3 color image. While using this dataset, each client is
assigned with 1600–2400 training images in 2–6 classes. Since CIFAR-10 is a more
complicated dataset, the corresponding CNN layers have doubled channels compared
with FMNIST, and other layers are the same as FMNIST.

• GermanTS (https://bitbucket.org/jadslim/german-traffic-signs; (accessed on 1 Febru-
ary 2022) (German Traffic Signs Dataset) consists of 34,799 training pictures, 12,630 test-
ing pictures, and 43 classes. The size of each picture is 32× 32× 3. Moreover, 30 data
partitions, each of which owns 900–1500 samples with 4–12 classes, are created and
assigned to 30 clients respectively and not repeatedly. Since the label number is large,
the corresponding CNN layers have half channels compared with FMNIST to reduce
model parameters, and other layers are the same as FMNIST.

Figure 4. The deployment architecture of Fed2A.

Moreover, three state-of-the-art methods are used as the baselines, namely:

• FedAvg [1]: The most popular FL method. It randomly selects a fraction of clients as
participants in a global round and aggregates local models averagely according to
data size.

• FedProx [29]: A variant of FedAvg. It introduces a proximal term µ in the objective
function to limit local changes for heterogeneous environments. Note that the value of
µ used in this paper is 1.

• FedAsync [7]: A classic asynchronous FL algorithm. It includes a proximal term
similar to FedProx. Since the collaborator immediately updates the global model
whenever it receives a local model, a mixed hyperparameter α is designed in the
aggregation process to balance the weights of the current global model and local
model. Note that we use FedAsync + Poly with a = 0.5 and µ = 1 in this paper.

Finally, three indicators are used as the evaluation metrics, namely:

• I1: The test accuracy of the global model in the final (300th) global round, which is
defined according to Formula (11) (where TP, TN, FP, FN represent true positives, true
negatives, false positives, false negatives, respectively). Note that the testing samples
of each dataset are untouched during the FL learning process.

• I2: The global round number when the test accuracy of the global model first reaches
the target accuracy. The target accuracy Taccuracy is 65.00%, 35.00%, and 85.00% for
FMNIST, CIFAR-10, and GermanTS, respectively, based on the performance of the
three baselines.

https://www.cs.toronto.edu/ kriz/cifar.html
https://bitbucket.org/jadslim/german-traffic-signs
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• I3: The total communication cost when the target accuracy is reached, which is
calculated according to Formula (12). Note that the estimated unit costs of shallow
layers and deep layers for the client–server communication are summarized in Table 3.

acc =
TP + TN

TP + FP + FN + TN
(11)

costall =
Ttarget

∑
t=1

(costt
shallow + costt

deep)
costshallow = 4 × shallown

1024 × 1024

costdeep = 4 × deepn
1024 × 1024

(12)

Table 3. The estimated unit cost of communication.

Cost Type Parameter Size Estimated Cost

costshallow for FMNIST 206,592 0.79 MB
costdeep for FMNIST 3,413,770 13.02 MB

costshallow for CIFAR-10 829,184 3.16 MB
costdeep for CIFAR-10 9,574,154 36.52 MB

costshallow for GermanTS 209,792 0.80 MB
costdeep for GermanTS 2,403,499 9.17 MB

4.2. Evaluation of PLU

To examine the influence of the most important parameters in PLU, i.e., P and D, ten
PLU variants with R = 300, P = 10, and D = 1 to 10, are created. Note that PLU(300, 10, 10)
means that no optimization is made.

According to Table 4 “Uploading” Group, as the value of D decreases, the accuracy
first increases and then decreases gradually. However, the round number when Taccuracy
is reached shows a consistent increase. It indicates that (1) uploading deep layers at the
proper time can not only reduce communication cost but also improve model performance,
and (2) when the uploading frequency of deep layers becomes too low, the accuracy and
training speed will be affected due to the missing of vital information.

Moreover, for FMNIST, PLU(300, 10, 7), which surpasses FedAvg and FedAsync, can
achieve the highest accuracy of 70.03% and reach the target accuracy soonest at 88th round
among all the PLU variants. In the meanwhile, PLU with D = 7 is a little worse than
FedProx, however, its communication cost is 84.6% of the one of FedProx. As for CIFAR-10
and GermanTS, PLU with D = 8 outperforms all three baselines.

The above analysis shows that besides the optimization of the client-server communi-
cation, PLU can, surprisingly, improve the model accuracy. It proves that the separated
training and uploading of shallow and deep layers of DNNs can efficiently and effectively
reduce the consumption of limited local computing resources and also bring additional
improvements in model accuracy for AFL.
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Table 4. Summary of experiment results.

Group Strategy
Accuracy at 300th Round Round Reached TAccuracy Costtarget (GB)

FMNIST CIFAR-10 GermanTS FMNIST CIFAR-10 GermanTS FMNIST CIFAR-10 GermanTS

Baseline

FedAvg 69.91% 38.08% 86.30% 94 97 265 1.27 3.76 2.58

FedProx 70.22% 38.58% 70.63% 77 89 - 1.04 3.45 -

FedAsync 66.98% 38.27% 69.57% 95 132 - 1.28 5.12 -

Uploading

PLU(300, 10, 1) 66.80% 36.01% 84.31% 168 150 - 0.44 1.32 -

PLU(300, 10, 2) 67.52% 35.54% 86.06% 120 119 269 0.50 1.47 0.76

PLU(300, 10, 3) 68.92% 36.94% 85.68% 118 118 258 0.61 1.83 0.94

PLU(300, 10, 4) 69.14% 37.34% 86.66% 99 101 257 0.65 1.95 1.16

PLU(300, 10, 5) 69.46% 37.37% 87.50% 107 100 272 0.81 2.27 1.47

PLU(300, 10, 6) 69.56% 38.26% 84.59% 90 97 285 0.81 2.48 1.78

PLU(300, 10, 7) 70.03% 38.28% 87.07% 88 97 209 0.88 2.80 1.50

PLU(300, 10, 8) 69.95% 38.64% 87.57% 94 86 172 1.04 2.76 1.37

PLU(300, 10, 9) 69.99% 38.24% 86.37% 88 88 228 1.09 3.13 2.03

Aggregating

TVW-exp 69.32% 44.07% 89.06% 44 62 133 0.59 2.40 1.29

TVW-inv 71.70% 44.94% 89.62% 39 60 133 0.53 2.33 1.29

TVW-log 71.38% 41.54% 88.48% 44 66 144 0.59 2.56 1.40

RCE 71.44% 41.07% 87.30% 51 84 200 0.69 3.26 1.95

Integrated Fed2A * 74.76% 45.99% 90.59% 18 54 120 0.20 1.74 0.97

* The default PLUs of Fed2A are PLU(300, 10, 7), PLU(300, 10, 8) and PLU(300, 10, 8) for FMNIST, CIFAR-10, and
GermanTS, respectively. Moreover, the default TVW of Fed2A is TVW-inv for all the three datasets.

4.3. Evaluation of TVW and RCE

First, as summarized in Table 4 “Aggregating” Group, the three TVW variants,
i.e., TVW-inv, TVW-exp, and TVW-log, can improve accuracy and learning speed signifi-
cantly, and TVW-inv outperforms the other two variants in all three datasets. Specifically,
against the best baselines in the three datasets (i.e., FedProx in FMNIST and CIFAR-10,
and FedAvg in GermanTS), TVW-inv can achieve the highest accuracy of 71.70%, 44.94%,
and 89.62% with an improvement of 2.11%, 16.49%, and 3.85%, respectively, and also first
reach the target accuracy at 39th, 60th, and 133th round with an acceleration of 49.35%,
32.58%, and 49.81%.

Second, to evaluate RCE, in FMNIST and CIFAR-10, 50 stimuli (5 stimuli from each of
the 10 categories) are randomly chosen from the testing dataset. Hence, the two RDMs will
maintain a size of 50× 50, and contain 1225 unique distance estimates. As for GermanTS,
whose category number is 43, 86 stimuli (2× 43) are used for representation, and the RDM
has 3655 unique pairwise distances. We use cosine distance for computation convenience.
As summarized in Table 4 “Aggregating” Group, an improvement in the test accuracy
and a boost of learning speed ranging from 1.16% to 6.45%, and 5.62% to 33.77% are
observed respectively by using RCE. It shows that the layer-wise aggregation based on the
representational consistency can, indeed, enhance the learning performance.

Finally, as illustrated by Figure 5, although the three TVW variants can achieve higher
test accuracy and reach the target accuracy faster than RCE, RCE can maintain a more
stable learning curve in all three datasets. It indicates that the informative weight can have
a steady improvement on the global model compared to the temporal weight.
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Figure 5. The accuracy curve of TVW and RCE compared with the baselines in (A) FMNIST;
(B) CIFAR-10; and (C) GermanTS.

4.4. Evaluation of Fed2A

By utilizing PLU, TVW, and RCE together, Fed2A can achieve the optimal perfor-
mance, namely:

1. As summarized in Table 4 “Integrated” Group, Fed2A can achieve the highest test
accuracy about 75% in FMNIST, 46% in CIFAR-10, and 91% in GermanTS with a
maximum increase of about 19%. Moreover, Fed2A can reach the Taccuracy with a boost
of about 76.62%, 39.36%, and 54.72%, compared with the best baseline in FMNIST,
CIFAR-10, and GermanTS, respectively;

2. As illustrated in Figure 6, within each of the three datasets, Fed2A can maintain a
sharper and stable accuracy curve and also outperform the three baselines consistently
throughout the learning process;

3. As shown in Figure 7, Fed2A can reduce communication cost significantly by about
77.30% for FMNIST, 39.57% for CIFAR-10, and 62.40% for GermanTS, respectively.

In summary, the above evaluation results reveal the efficiency and effectiveness of
Fed2A in supporting AFL by implementing a two-stage asynchronous learning procedure
and three adaptive strategies, i.e., PLU, TVW, and RCE.

Figure 6. The accuracy curve of Fed2A compared with the baselines in (A) FMNIST; (B) CIFAR-10;
and (C) GermanTS.
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Figure 7. The communication cost of Fed2A compared with the baselines in the three datasets. Note
that since FedProx and FedAsync have not reached the target accuracy for GermanTS, the correspond-
ing costs are the overall costs of the total 300 rounds, i.e., 2.92 GB.

4.5. Discussion

First, the results of PLU indicate that deep layers contain much more redundant infor-
mation compared with shallow layers, which not only wastes communication resources, but
also influences model aggregation performance. Hence, reducing the uploading frequency
of deep layers is beneficial to be communication-efficient. Moreover, for complicated
datasets, such as CIFAR-10 and GermanTS, the optimal value of D is larger than simpler
datasets such as FMNIST, which suggests that deep layers are more valuable for complex
tasks and can be uploaded more frequently in these situations.

Second, TVW-inv performs the best among the three TVW variants, which shows
that punishing the stale models harshly can enhance the aggregation process and newer
parameters should be valued. The great performance improvement of TVW also indicates
that we should pay more attention to the temporal heterogeneity issue of AFL in the future.

Third, the stable and satisfactory performance of RCE suggests the representational
consistency presents the deep difference between local layers and global layers. It can
quantify the contribution of each local layer and hence can steer the aggregation direction
effectively and efficiently.

Finally, Fed2A, which integrates the three strategies, can achieve optimal performance
in terms of test accuracy, training speed, and communication efficiency. It shows that Fed2A
can tackle temporal and informative heterogeneity issues of AFL jointly, as well as saving
communication resources significantly.

5. Conclusions

This paper introduces a federated learning mechanism in asynchronous and adaptive
modes, called Fed2A. In Fed2A, both clients and the collaborator can run in an unblocking
manner for local model uploading and global model aggregation. Moreover, to assist the
asynchronous learning procedure, three adaptive strategies are proposed, namely, (1) PLU
to adaptively upload shallow and deep layers of DNN layers, and (2) TVW and RCE to
enhance the global aggregation based on adaptive weights calculated from the temporal
and informative attributes of local parameters.

As for the three strategies, they are evaluated separately, and related results show that
(1) the adaptive uploading frequency of deep and shallow layers can save communication
costs significantly and, surprisingly, improve the model accuracy slightly; (2) stale models
need to be punished while newer parameters deserve larger weights in AFL to boost model
performance; (3) the representational consistency between local layers and global layers
based on RDM can be utilized in the aggregation to guide the right convergence direction
of the global model.
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Moreover, the effectiveness and efficiency of Fed2A utilizing the three strategies jointly
are evaluated based on three standard datasets (i.e., FMNIST, CIFAR-10, and GermanTS).
As a result, compared with FedAvg, FedProx, and FedAsync, Fed2A can significantly
improve model accuracy, training speed, and communication efficiency by about 19%,
76.62%, and 77.30%, respectively.

Although Fed2A performs well in terms of the three metrics, there are three limita-
tions to Fed2A: (1) Fed2A only considers the uploading stage of local models, and the
downstream optimization remains undiscussed; (2) an extra computation cost is needed
for Fed2A to enhance the aggregation process by computing RDM; and (3) there are other
formats of delay functions to be explored. Accordingly, in the future, these limitations will
be addressed, namely, (1) PLU to support both upstream and downstream of the commu-
nication channel will be designed to further optimize the interaction between clients and
the collaborator; (2) the computation in RCE will be simplified to accelerate the model
aggregation process, and in turn, improve the learning performance; (3) a general format
of temporal function will be studied, and a greedy algorithm will be designed to find the
optimal solution.
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The following abbreviations are used in this manuscript:

Fed2A Federated learning mechanism in Asynchronous and Adaptive modes
IoT Internet of Things
FL Federated Learning
DNN Deep Neural Network
AFL Asynchronous Federated Learning
PLU Periodic Layer Uploading strategy
TVW Time Variety Weighting strategy
RCE Representational Consistency Enhancing strategy
Non-iid Non-independent and identically distributed
RDM Representational Dissimilarity Matrix
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