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Abstract
The Internet of Things (IoT) intertwined with 

autonomous and intelligent things (AITs) is begin-
ning to affect many aspects of our daily lives. 
Along with this trend, asynchronous federated 
learning (AFL) is an enabler of harnessing the 
diverse and heterogeneous sensing and com-
puting capabilities of AITs in a collaborative and 
privacy-enhancing manner. In this paper, to ease 
the deployment and improve the performance 
of AFL for AITs, FedAL (Federated and Asynchro-
nized Learning Framework) is proposed, which 
can orchestrate the learning process at AITs based 
on customizable and reusable microservices, acti-
vate AITs with high self-information changes as 
AFL clients to remedy overlearning, optimize the 
client-server interaction to support cost-efficient 
model updates, and enhance the model aggre-
gation function by applying an adaptive weight 
measuring both the information staleness and 
richness of local updates. It is seen that, compared 
with three baselines (i.e., FedAvg, FedAsync, and 
FedConD), FedAL can significantly improve the 
overall performance in terms of model accuracy 
by 2.58%, communication delay by 48.83%, and 
communication cost by 69.84%.

Introduction
With the rapid development of the Internet of 
Things (IoT), massive autonomous and intelligent 
things (AITs), e.g., unmanned vehicles, assistive 
robotics, etc., are being connected to form dis-
tributed and versatile networks. By harnessing the 
plentiful sensing and computing resources of such 
networks, the level of automation and intelligence 
of AITs can be further elevated by adopting artifi-
cial intelligence (AI) methodology, such as deep 
neural networks (DNNs) [1]. However, since the 
centralized learning (CL) approach often requires 
high-resolution data to be stored and processed at 
a data center, it is incapable of fully utilizing the 
distributed computing power and private data of 
diversified AITs to mine inter-knowledge.

Therefore, a decentralized approach, called 
Federated Learning (FL), has been proposed to 
bridge data and computing silos to train shareable 
models in a collaborative and privacy-enhanc-
ing way [2]. Due to its merits in private data 

protection and training cost reduction, FL has 
been adopted in several applications, including 
healthcare, mobility, smart grid, etc. [3]. More-
over, according to the communication mode, FL 
can be categorized into synchronous FL (SFL) with 
clients working at the same pace, and asynchro-
nous FL (AFL) with all clients working individually 
and independently. Since various IoT systems and 
services are generally distributed at the edge with 
Non-IID (non-independent and identically dis-
tributed) data and heterogeneous computation 
capabilities and availabilities, AFL is more suitable 
for AITs to jointly train DNNs with less communi-
cation load and latency, as well as fewer learning 
disruptions and misguidances [4].

Initially, in order to ease bandwidth usage, con-
ventional techniques, i.e., update compression and 
frequency reduction, have been adopted, and as 
alternatives to tackle their side effects of informa-
tion loss, solutions splitting the update of shallow 
and deep layers of DNNs have also been studied 
[4], [5]. Even though these methods can reduce 
communication costs, it is still an unsolved prob-
lem to achieve an optimal tradeoff in learning cost 
and accuracy. Moreover, regarding the variance 
in temporal staleness and informative richness of 
local parameters, several weighted strategies have 
been proposed to update the global model with 
higher accuracy by steering the learning direction 
[4]. However, the intrinsic influences of Non-IID 
data and frequently changed availabilities of AITs 
have not not addressed thoroughly for AFL from 
client activation, client-server interaction, then to 
model aggregation. Finally, since AITs vary from 
each other in software and hardware capabili-
ties, a scalable and re-deployable AFL framework, 
such as service-centric networking [6], is missing 
to unify and simplify the learning configuration.

To implement efficient and effective AFL on 
diversified and distributed AITs, this article pro-
poses FedAL: Federated and Asynchronized 
Learning Framework, which has four main 
contributions:
•	 It modularizes learning functions of the 

AFL server and clients as customizable and 
re-deployable microservices to simplify the 
deployment process;

•	 It activates AITs with high self-information 
changes as AFL clients to train local models 
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with more important parameters for the 
global model to converge rapidly;

•	 It uploads deep and shallow layers of DNNs 
adaptively to achieve an optimal tradeoff in 
learning cost and accuracy;

•	 It enhances the aggregation function based 
on an adaptive weight measuring both 
the information staleness and richness of 
local updates to improve the learning 
performance.
The remainder of this article is organized as 

follows. First, Section II compares FL with CL, and 
then discusses FL in synchronous and asynchro-
nous modes together with emerging challenges 
and related solutions to disclose the current 
research gap. After that, FedAL is presented in 
Section III and evaluated in Section IV respec-
tively. Finally, Section V concludes the work and 
sketches future research directions.

From Centralized Learning to Federated 
Learning: Comparisons, Modes, 

Challenges, and Solutions
The application of advanced technologies and 
the engagement of laws and regulations about 
data security and user privacy jointly stimulate a 
transformation of the learning paradigm from CL 
to FL to integrate vast and isolated data and also 
harness plentiful and diverse computing powers 
of AITs. To illustrate the influence of such a trans-
formation, this section compares the workflows 
of CL and FL, and then discusses the synchronous 
and asynchronous modes of FL together with 
emerging challenges and related solutions.

Comparisons Between CL and FL
As shown in Fig. 1, both CL and FL rely on the 
same resources from the edge to the cloud, 
including AITs, networking facilities, and cloud 
servers, and also consist of three phases, i.e., local 
computing, intermediate transmission, and global 
processing. However, their differences can be 
highlighted through their workflows. As shown 
on the left side of Fig. 1. CL addresses the het-
erogeneity of the multi-source data for a global 
model in a data center. First, data sources are 
selected according to training requirements, and 
then, related data are uploaded to the data cen-
ter. After that, the global model is trained at the 

server and applied at AITs to assist domain-spe-
cific tasks, e.g., diagnosis support in healthcare or 
object identification in mobility applications. Note 
that according to the feedback gathered during 
the actual usage, another round of training can be 
performed to update the model on demand.

In contrast to CL, as shown on the right side 
of Fig. 1 FL implements a decentralized paradigm 
to train a shareable model in an iterative manner. 
First, AITs fitting the overall learning objective are 
activated as FL clients, and then, local models are 
trained based on their local resources. Instead of 
explicitly uploading the raw data, local models are 
uploaded to the server and used to generate a 
new global model based on a pre-defined aggre-
gation function, e.g., FedAvg [7]. Finally, based 
on a performance test, the server will determine 
whether to update the current global model or 
stop the learning by broadcasting control com-
mands to the clients.

In summary, compared to CL, FL has the follow-
ing advantages. First, its clients can process their 
private data locally and communicate with the 
server cryptographically [8] to ensure user privacy 
and data security. Second, FL can maintain light 
network traffic by transmitting only the learning 
parameters. Third, it can utilize distributed comput-
ing powers of AITs to ease the burden of central 
servers. Finally, it is more suitable to process large-
scale and unbalanced Non-IID data isolated at AITs.

FL Synchronous and Asynchronous Modes
As shown in Fig. 2, FL can foster a learning con-
sortium that covers a wide range of AITs, e.g., 
unmanned vehicles, assistive robots, robotic arms, 
mobile devices, and sensing units [9]. FL can also 
support with various connectivities, e.g., in V2X 
(vehicle to everything), fiber connections for road-
side units, and 6G and Bluetooth for on-board 
units [10]. To fully utilize these available AITs, FL 
can work synchronously or asynchronously in two 
phases, i.e., an initialization phase to activate and 
organize FL clients, and an execution phase to 
support the client-server interactions.

1) Initialization Phase: Both synchronous FL 
(SFL) and asynchronous FL (AFL) need to select 
and activate available AITs as FL clients according 
to rules and criteria defined by learning tasks, e.g., 
to train a traffic sign detector or a lesion annota-
tor, the rules can be selecting top N clients with 
the highest data quality and computing powers, 

FIGURE 1. The comparison of CL and FL. Note that in the middle, there are common learning resources and phases used by both CL and FL.
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and the criteria may include the minimum sam-
ple size, network bandwidth, etc. Moreover, since 
the availability of AITs may change over time and 
place, it is practical to maintain a sufficient num-
ber of learning participants by selecting FL clients 
periodically. Finally, as a best practice to save 
communication costs, activated AITs can be orga-
nized in various network topologies according to 
their actual running statuses [9].

2) Execution Phase: The interaction between 
the server and clients highlights the differences 
between SFL and AFL.
•	 Synchronous Mode: All FL clients work at the 

same pace. After a start command from the 
server is received, FL clients will train and then 
upload local models. Meanwhile, the server 
will wait for the arrival of all the parameters 
and aggregate them to update the global 
model. After that, a new learning iteration 
starts or the learning ends when a pre-defined 
target or constraint (e.g., the minimum error 
rate or maximum iteration) is reached.

•	 Asynchronous Mode: All FL clients can work 
separately. The server can update the glob-
al model as soon as it receives a certain 
number of parameters or triggers a default 
timer. Hence, two concurrent threads are 
required, i.e., one thread supports the con-
tinuous uploading of local parameters, and 
the other thread supports the unblocked 
aggregation of local parameters. It is worth 
noting that an intermediate buffer exists in 
between the two threads to store received 
local parameters.
Compared to AFL, SFL is simpler but limited 

to supporting diversified AITs, as it requires all 
participants to be online until the learning ends 
[2]. Since, in reality, the number of AITs can also 
grow gradually [4], it can significantly increase 

the collaboration complexity of SFL to train an 
efficient and effective model based on scarce and 
biased data. Even though such complexity can 
be reduced by the synchronization between FL 
clients and the server, SFL still suffers from the 
issue of stragglers, which can lag the whole learn-
ing process, leading to unexpected droppings 
of learning performance [9]. In contrast, AFL 
has intrinsic advantages in tackling these issues 
regarding the intermittency of connections, the 
variability of local information, and the unreli-
ability of learning participants, especially when 
equipped with dedicated strategies in related 
learning steps, e.g., in client selection to activate 
clients with high contributions [11], in parame-
ter transmitting to upload local parameters with 
scheduled submodels [5], and in model aggre-
gation to process parameters based on fading 
weights [4].

Emerging Challenges in AFL
The need for AFL is surging along with the pene-
tration of ubiquitous IoT systems and services, as 
there are massive AITs with distinguishable data 
and configurations. As such, several challenges 
are emerging:
•	 C.1 Function Orchestration: Different from 

conventional solutions, AFL requires related 
functions to be executed at each client sta-
bly and consistently. Therefore, modularized 
functions are needed to orchestrate a uni-
fied and compatible learning process across 
AITs [6].

•	 C.2 Client Activation: If a learning cluster is 
initialized to use clients randomly, the clients 
with biased data may cause the over-learning 
issue. Hence, it becomes critical to activate 
AITs with sufficient data as AFL clients [11].

•	 C.3 Interaction Optimization: The incremen-
tal exchanges of learning parameters may 
disrupt local services and network usage at 
AITs. Thus, the asynchronous client-server 
interaction shall be optimized to reduce 
communication costs, and in turn, improve 
service quality [4].

FIGURE 2. The similarities and differences between SFL and AFL. They have a common learning consortium of available AITs, and also 
two working phases, i.e., 1) Initialization phase to activate clients according to predefined rules and criteria, and 2) Execution phase 
in synchronous or asynchronous modes.

The need for AFL is surging along with the penetration of ubiquitous IoT systems and services, as there 
are massive AITs with distinguishable data and configurations.
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•	 C.4 Aggregation Enhancement: Besides the 
informative difference derived from Non-
IID data, local parameters from AITs may 
also vary in staleness. Consequently, how 
to aggregate them becomes essential for 
AFL to train high-performance global 
models [13].

Related Solutions About AFL
To address these challenges, several solutions are 
proposed. First, service-centric architectures are 
discussed as a preferable choice to deploy AI on 
AITs [6]. Even though related solutions, such as 
service-oriented architecture, have been utilized, 
their actual usage in AFL is rarely observable, 
showing a clear gap in orchestrating learning 
functions at diversified AITs. Second, strategies 
measuring the diversity of local resources are 
proposed to select an appropriate set of learning 
participants to tackle over-learning issues, e.g., 
AUCTION (Automated and qUality aware Cli-
ent selecTION framework) [11] activating clients 
with high-quality data within a limited budget. 
However, in general, these solutions rely heavily 
on performance tests of trained models, which 
may make them behindhand to newly sensed 
data. Third, to reduce the network load, three 
approaches are discussed, i.e., update compres-
sion, frequency reduction, and model split [5]. 
Compared with the first two approaches, the 
last approach can avoid side effects of informa-
tion loss, e.g., a layer-wise asynchronous model 
update strategy with a reduced update fre-
quency of deep layers of DNNs [5]. However, 
how to achieve optimal performance in both 
learning cost and accuracy is still open for solu-
tions. Finally, as for the model aggregation, since 
the information richness and freshness of local 
parameters may vary among AFL clients, several 

weighing strategies are proposed to harness 
them for a performance boost, e.g., heuristic 
weights to control the training speed [4], and a 
mutual information-driven mechanism to steer 
the training direction [13]. However, how to 
measure the informative and temporal attributes 
jointly is still missing.

As summarized in Table 1, a framework that 
can comprehensively address the emerging chal-
lenges is required. Therefore, this paper presents 
FedAL, which can orchestrate microservices at 
AITs to train DNNs efficiently and effectively.

Proposed FedAL
As shown in Fig. 3, FedAL implements a unified 
AFL process consisting of four steps.

Microservice Deployment
FedAL contains a microservice registry to man-
age reusable and re-deployable function units, 
e.g., 1) self-activation, local training, and param-
eter uploading microservices for clients, and 2) 
parameter receiving and aggregation microser-
vices for the server. Moreover, according to the 
task specification, related microservices can be 
extracted, customized, and deployed to the clients 
and server beforehand. Hence, a collaborative 
AFL process can be orchestrated without exces-
sive efforts on reengineering and redevelopment.

Client Activation
Through daily usage, AITs can continuously 
sense new data and wait for activation. To select 

Solutions
Function
Orchestration

Client
Activation

Interaction
Optimization

Aggregation
Enhancement

Highlights
(+ pros and - cons)

[6]
A software-defined service-centric networking framework:
+ Service-centric to optimize the learning workload
− Weak support for interaction and aggregation

[11]
A quality-aware client-selected federated learning algorithm:
+ Evaluating learning quality to select clients
− Behindhand to newly sensed data

[12]
Asynchronous transmission scheduling algorithms:
+ Adaptive transmission scheduling for AFL
− Over-learning issue caused by Non-IID not addressed

[5]

A resource-efficient learning approach:
+ Training and uploading the assigned submodel per client
+ Layerwise gradient information aggregation
− Layer uploading frequency not optimized
− Over-learning issue undiscussed

[13]
An FL approach with resorting to mutual information
+ Local training and global aggregated steered
− Over-learning issue caused by stragglers not tackled

FedAL (Proposed)

A unified and compatible AFL framework:
+ Microservice orchestration for AFL server and clients
+ Self-information change-based client activation
+ Adaptive layer uploading
+ Fused aggregation weight

TABLE 1. The overall evaluation of reviewed solutions (  supported  not supported).

Hence, a collaborative AFL process can be orchestrated without excessive efforts on reengineering 
and redevelopment.
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clients from available AITs, an indicator mea-
suring the self-information changes of AITs is 
used. Specifically, the information changes can 
be computed based on relative entropy or Kull-
back-Leibler Divergence of sensed datasets of 
AITs at two different times, e.g., in the t − 1 and 
t learning interactions. Accordingly, clients with 
changes in the top α percent will be selected to 
start the local training, and for those unselected, 
they can continue sensing new data and waiting 
for the activation in future iterations. Note that 
α is a hyperparameter, which can be configured 
according to the grid search method or a heuristic 
optimizer that can adjust α according to the com-
plexity of tasks and the richness of data.

Client-Server Interaction
Based on protected communication channels 
(e.g., encrypted or blockchain-based [8]), the 
client-server interaction in FedAL is unbounded. 
Hence, local parameters can be on-time received, 
late received, or lost. If local parameters are with 
the first two statuses, they are well received by 
the server, but with a difference in the arrival time, 
either before or after a default counter or timer 
is triggered. Moreover, based on the observation 
that shallow layers of DNNs (i.e., convolutional 
layers) are more crucial but with fewer parame-
ters than deep layers (i.e., fully connected layers) 
[4], an adaptive parameter uploading strategy, 
noted as APU(m, β), is designed to reduce the 
communication cost by uploading deep layers 
adaptively. Specifically, APU segments the whole 
learning process into several learning phases, in 
each of which, there are m learning iterations, and 
deep layers are uploaded in the last ⎡β × m⎤ itera-
tions. Note that m and β are the hyperparameters, 
which can be set either manually according to 
prior knowledge or dynamically according to the 
runtime feedback generated from a critic (that 
can be pre-trained based on meta-learning).

Model Aggregation
Since received parameters can have different lev-
els of staleness and amount of information, an 
adaptive aggregation mechanism is implemented 

to update the global model by using an adaptive 
weight (AW). As for the calculation of AWi for the 
ith client, first, a temporal weight TWi is computed 
based on the differences between the created 
time and received time of the local model. Sec-
ond, an informative weight IWi is calculated by 
the information entropy of local data used to 
train the local model. Finally, TWi and IWi are 
multiplied and normalized among all clients to 
generate AWi.

In summary, compared to the current solutions, 
first, FedAL can ease the configuration of the 
learning process by deploying microservices onto 
its clients and server. Second, it can avoid over-
learning issues by selecting AITs with appropriate 
data as clients. Third, it can reduce communica-
tion costs without damaging model performance 
by optimizing client-server interactions. Finally, 
it can enhance the model aggregation by jointly 
weighing the temporal and informative attributes.

Case Study and Discussion
FedAL is evaluated together with three baselines, 
i.e., FedAvg [7] a widely used synchronous method, 
FedAsync [14] a classic asynchronous algorithm, 
and FedConD [15] an AFL method considering con-
cept drift caused by continuously increased sensing 
data. Note that FedAL has been integrated and pub-
licly available through an open-source project.1

Simulation Setup
First, 50 AITs are visualized with various capabilities 
(reflected by the data transmission time ranging 
from 10 s to 40 s with a dropping rate ranging 
from 1% to 5%) to train a convolutional neural net-
work (CNN) with 2 convolutional layers (shallow 
layers) and 2 fully connected layers (deep layers). 
Specifically, the two convolutional layers have 32 
and 64 channels, respectively, followed by a 2 × 
2 max-pooling layer. The fully connected layer has 
256 units followed by a softmax unit as the output 
layer. The default local epoch, learning rate, and 
batch size are 2, 0.003, and 48, respectively.

Second, gradually increasing and Non-IID data 
per client is created based on the training samples 
of five standard datasets, i.e., MNIST,2 FMNIST,3 

FIGURE 3. The overall architecture and workflow of FedAL. It includes A) microservice deployment to load learning-related functions on 
AFL clients and the server; B) client activation to select clients with high information changes; C) client-server interaction to upload 
the deep and shallow layers selectively; and D) model aggregation to merge received local parameters based on adaptive weights.

1 https://github.com/Intel-
ligentSystemsLab/generic_
and_open_learning_federator 
 
2 http://yann.lecun.com/
exdb/mnist 
 
3 https://github.com/ 
zalandoresearch/
fashion-mnist
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German Traffic Sign Benchmark (GTSRB),4 CIFAR-
10,5 and Driver Distraction Detection (3D) 
dataset.6 MNIST and FMNIST are two widely used 
classification datasets about handwritten digits 
and fashion images, respectively. As for GTSRB, 
it consists of 43 classes, e.g., speed limit, chil-
dren crossing and ahead only. CIFAR-10 and 3D 
datasets contain 10 classes about traffic means/
animals (such as airplanes and birds) and driver 
statuses (such as safe driving and talking to pas-
sengers), respectively. In general, the local data 
of AITs will have an initial portion of about 6% to 
12%, and increase by 2%–4% or 0.2%–0.4% per 
learning iteration to simulate the arrival of new 
data in the real world. Note that the test samples 
of the five datasets are kept untouched and only 
used to evaluate model accuracy.

Finally, FedAvg (with C in [7] = 0.1), FedAsync 
(with a and μ in [14] = 0.5 and 1, respectively), 
FedConD (with γ in [15] = 0.2), and the proposed 
FedAL are compared through three evaluation 
metrics, namely model accuracy, communica-
tion cost, and transmission time. Specifically, the 
model accuracy is tested on the global model 
updated at the server by using the test samples. 
The communication cost accumulates the size of 
local parameters transmitted over the network. 
The transmission time is the sum of the waiting 
time to start an aggregation in the server, which 
also reflects the overall communication delay.

Results and Discussion
FedAL is evaluated with the three baselines to 
reveal related improvements achieved in transmis-
sion time, communication cost, model accuracy, 
and learning stability.

1) Transmission Time: As shown in Fig. 4A, a 
minor delay is experienced in AFL methods, as the 
stragglers, which are the bottlenecks of FedAvg 
in SFL, can be addressed by the unblocking cli-
ent-server interaction. While comparing FedAsync 
and FedConD with FedAL, a clear gap in accuracy 
growth rate and stability can be observed. More-
over, when the target accuracy of 80% is first 
achieved, the delay of FedAL (920s) is approxi-
mately 48.83% lower than that of the second-best 
method FedAsync (1798s).

2) Communication Cost: As shown in 
Fig. 4B, FedAsync consumes more communication 
resources to be comparable with the rest three 
methods. Another AFL method FedConD shares 
a similar learning curve with the SFL method Fed-
Avg, which indicates the superiority of selective 
communication strategy. While comparing the com-
munication cost of FedAL (4.06GB) at the target 
accuracy with the secondbest method FedConD 
(13.46GB), a reduction of 69.84% can be further 
achieved since the local model parameters are selec-
tively uploaded and adaptively aggregated in FedAL.

3) Model Accuracy: As shown in Fig. 4A, when 
the maximum learning time is exceeded, FedAL 
can reach the highest model accuracy of 88.74%, 
with an improvement of about 44.20%, 2.58%, and 
9.54% compared to FedAvg (61.54%), FedAsync 
(86.51%), and FedConD (81.01%), respectively.

4) Learning Stability: As illustrated in Table 2 
the local accuracies of FedAL in various settings 
of the three hyperparameters, i.e., α, m, and β, 
are compared with the three baselines. First, as 
for APU (m, β), it is correlated to the learning 
tasks and more complicated tasks may need a 
higher m and lower β to achieve the best perfor-
mance. Second, FedAL with α = 0.7 outperforms 
the baselines and other FedAL settings on three 
datasets (except for CIFAR-10 with α = 0.8). The 
results indicate that an appropriate number of 
activated clients controlled by α is essential for 
FedAL to achieve optimal performance.

In summary, due to its ability in selecting clients 
with sufficient data and self-information changes, 
transmitting local updates with a distinguishable 
and adjustable frequency, and updating the global 
model according to adaptive weights that mea-
sure the staleness and richness of received local 
parameters in each asynchronous learning round, 
FedAL outperforms the three baselines with 
higher learning accuracy and stability, as well as 
lower communication delay and cost.

FIGURE 4. Comparison between FedAL and three baselines on GBSRB dataset. A) Model accuracy vs. transmission time; and B) model 
accuracy vs. communication cost. It shows that the proposed FedAL can achieve the target accuracy more rapidly with fewer 
communication costs.

FedAL is evaluated with the three baselines to reveal related improvements achieved in transmission 
time, communication cost, model accuracy, and learning stability.

4 https://bitbucket.org/ 
jadslim/german-traffic-signs 
 
5 https://www.cs.toronto.
edu/kriz/cifar.html 
 
6 https://www.kaggle.
com/c/state-farm- 
distracted-driver-detection
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Conclusion
This article has first compared FL with CL to 
elucidate its advantages in accommodating 
distributed AITs in a collaborative and privacy-pre-
serving way. Moreover, AFL has been compared 
with the widely discussed SFL to reveal its merits 
in supporting diversified AITs with heterogeneous 
configurations. After that, by identifying encoun-
tered challenges and flaws of related solutions 
about AFL to support AITs, FedAL has been pro-
posed, which implements a unified AFL framework 
with microservice deployment, client activation, 
client-server interaction, and model aggregation 
to train DNNs efficiently and effectively. Finally, a 
case study simulating a real-world scenario of AITs 
has been given to comparing FedAL with three 
baselines, i.e., FedAvg, FedAsync, and FedConD. It 
shows that compared to the second best method, 
FedAL can improve the performance significantly, 
i.e., increasing model accuracy by 2.58%, reducing 
communication delay by 48.83%, and saving com-
munication cost by 69.84%. 

This study suggests several interesting research 
directions that can be:
•	 Easy-to-Install Containers: The running of 

microservices at AITs depends on a visual-
ized container, which is still burdensome to 
install. Therefore, a simplified procedure can 
be designed and implemented to further lift 
the usability and compatibility of FedAL;

•	 Global Data Quality Indicators: Even though 
the adaptive client activation and model 
aggregation implemented in FedAL can sig-
nificantly remedy the over-learning issue, the 
impact of Non-IID data still remains as cur-
rently the quality of data is measured in iso-
lation. Hence, indicators with global probes 
in AITs can be investigated to fully resolve 
the over-learning issue in FedAL;

•	 Cost-Effective Incentive Mechanisms: It is 
unfair for participants who contribute the 
most to be treated the same as slackers. 
Moreover, it is ideal for collaborators to 
maximize benefits while minimizing costs. 
Thus, incentive mechanisms can be studied 

to foster an active and reputable consortium 
of AITs for FedAL.
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