
IEEE Network • March/April 2024286 0890-8044/23©2023IEEE

Abstract
The Internet of Things (IoT) intertwined with

autonomous and intelligent things (AITs) is begin-
ning to affect many aspects of our daily lives.
Along with this trend, asynchronous federated
learning (AFL) is an enabler of harnessing the
diverse and heterogeneous sensing and com-
puting capabilities of AITs in a collaborative and
privacy-enhancing manner. In this paper, to ease
the deployment and improve the performance
of AFL for AITs, FedAL (Federated and Asynchro-
nized Learning Framework) is proposed, which
can orchestrate the learning process at AITs based
on customizable and reusable microservices, acti-
vate AITs with high self-information changes as
AFL clients to remedy overlearning, optimize the
client-server interaction to support cost-efficient
model updates, and enhance the model aggre-
gation function by applying an adaptive weight
measuring both the information staleness and
richness of local updates. It is seen that, compared
with three baselines (i.e., FedAvg, FedAsync, and
FedConD), FedAL can significantly improve the
overall performance in terms of model accuracy
by 2.58%, communication delay by 48.83%, and
communication cost by 69.84%.

Introduction
With the rapid development of the Internet of
Things (IoT), massive autonomous and intelligent
things (AITs), e.g., unmanned vehicles, assistive
robotics, etc., are being connected to form dis-
tributed and versatile networks. By harnessing the
plentiful sensing and computing resources of such
networks, the level of automation and intelligence
of AITs can be further elevated by adopting artifi-
cial intelligence (AI) methodology, such as deep
neural networks (DNNs) [1]. However, since the
centralized learning (CL) approach often requires
high-resolution data to be stored and processed at
a data center, it is incapable of fully utilizing the
distributed computing power and private data of
diversified AITs to mine inter-knowledge.

Therefore, a decentralized approach, called
Federated Learning (FL), has been proposed to
bridge data and computing silos to train shareable
models in a collaborative and privacy-enhanc-
ing way [2]. Due to its merits in private data

protection and training cost reduction, FL has
been adopted in several applications, including
healthcare, mobility, smart grid, etc. [3]. More-
over, according to the communication mode, FL
can be categorized into synchronous FL (SFL) with
clients working at the same pace, and asynchro-
nous FL (AFL) with all clients working individually
and independently. Since various IoT systems and
services are generally distributed at the edge with
Non-IID (non-independent and identically dis-
tributed) data and heterogeneous computation
capabilities and availabilities, AFL is more suitable
for AITs to jointly train DNNs with less communi-
cation load and latency, as well as fewer learning
disruptions and misguidances [4].

Initially, in order to ease bandwidth usage, con-
ventional techniques, i.e., update compression and
frequency reduction, have been adopted, and as
alternatives to tackle their side effects of informa-
tion loss, solutions splitting the update of shallow
and deep layers of DNNs have also been studied
[4], [5]. Even though these methods can reduce
communication costs, it is still an unsolved prob-
lem to achieve an optimal tradeoff in learning cost
and accuracy. Moreover, regarding the variance
in temporal staleness and informative richness of
local parameters, several weighted strategies have
been proposed to update the global model with
higher accuracy by steering the learning direction
[4]. However, the intrinsic influences of Non-IID
data and frequently changed availabilities of AITs
have not not addressed thoroughly for AFL from
client activation, client-server interaction, then to
model aggregation. Finally, since AITs vary from
each other in software and hardware capabili-
ties, a scalable and re-deployable AFL framework,
such as service-centric networking [6], is missing
to unify and simplify the learning configuration.

To implement efficient and effective AFL on
diversified and distributed AITs, this article pro-
poses FedAL: Federated and Asynchronized
Learning Framework, which has four main
contributions:
•	 It modularizes learning functions of the

AFL server and clients as customizable and
re-deployable microservices to simplify the
deployment process;

•	 It activates AITs with high self-information
changes as AFL clients to train local models

Federated and Asynchronized Learning for Autonomous and Intelligent Things
Linlin You, Sheng Liu, Bingran Zuo, Chau Yuen, Dusit Niyato, and H. Vincent Poor

OPEN CALL ARTICLE

Linlin You is with the School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510275, China, and also with the
Intelligent Transportation Systems Lab, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Sheng Liu is with the School
of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510275, China; Bingran Zuo is with the Rehabilitation Research
Institute of Singapore, Nanyang Technological University, Singapore 639798; Chau Yuen (corresponding author) is with the School of

Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798; Dusit Niyato is with the School of Computer
Science and Engineering, Nanyang Technological University, Singapore 639798; H. Vincent Poor is with the Department of Electrical and

Computer Engineering, Princeton University, Princeton, NJ 08544 USA.

Digital Object Identifier:
10.1109/MNET.2023.3321519
Date of Current Version:
10 May 2024
Date of Publication:
9 October 2023

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 11,2024 at 03:54:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2024 287

with more important parameters for the
global model to converge rapidly;

•	 It uploads deep and shallow layers of DNNs
adaptively to achieve an optimal tradeoff in
learning cost and accuracy;

•	 It enhances the aggregation function based
on an adaptive weight measuring both
the information staleness and richness of
local updates to improve the learning
performance.
The remainder of this article is organized as

follows. First, Section II compares FL with CL, and
then discusses FL in synchronous and asynchro-
nous modes together with emerging challenges
and related solutions to disclose the current
research gap. After that, FedAL is presented in
Section III and evaluated in Section IV respec-
tively. Finally, Section V concludes the work and
sketches future research directions.

From Centralized Learning to Federated
Learning: Comparisons, Modes,

Challenges, and Solutions
The application of advanced technologies and
the engagement of laws and regulations about
data security and user privacy jointly stimulate a
transformation of the learning paradigm from CL
to FL to integrate vast and isolated data and also
harness plentiful and diverse computing powers
of AITs. To illustrate the influence of such a trans-
formation, this section compares the workflows
of CL and FL, and then discusses the synchronous
and asynchronous modes of FL together with
emerging challenges and related solutions.

Comparisons Between CL and FL
As shown in Fig. 1, both CL and FL rely on the
same resources from the edge to the cloud,
including AITs, networking facilities, and cloud
servers, and also consist of three phases, i.e., local
computing, intermediate transmission, and global
processing. However, their differences can be
highlighted through their workflows. As shown
on the left side of Fig. 1. CL addresses the het-
erogeneity of the multi-source data for a global
model in a data center. First, data sources are
selected according to training requirements, and
then, related data are uploaded to the data cen-
ter. After that, the global model is trained at the

server and applied at AITs to assist domain-spe-
cific tasks, e.g., diagnosis support in healthcare or
object identification in mobility applications. Note
that according to the feedback gathered during
the actual usage, another round of training can be
performed to update the model on demand.

In contrast to CL, as shown on the right side
of Fig. 1 FL implements a decentralized paradigm
to train a shareable model in an iterative manner.
First, AITs fitting the overall learning objective are
activated as FL clients, and then, local models are
trained based on their local resources. Instead of
explicitly uploading the raw data, local models are
uploaded to the server and used to generate a
new global model based on a pre-defined aggre-
gation function, e.g., FedAvg [7]. Finally, based
on a performance test, the server will determine
whether to update the current global model or
stop the learning by broadcasting control com-
mands to the clients.

In summary, compared to CL, FL has the follow-
ing advantages. First, its clients can process their
private data locally and communicate with the
server cryptographically [8] to ensure user privacy
and data security. Second, FL can maintain light
network traffic by transmitting only the learning
parameters. Third, it can utilize distributed comput-
ing powers of AITs to ease the burden of central
servers. Finally, it is more suitable to process large-
scale and unbalanced Non-IID data isolated at AITs.

FL Synchronous and Asynchronous Modes
As shown in Fig. 2, FL can foster a learning con-
sortium that covers a wide range of AITs, e.g.,
unmanned vehicles, assistive robots, robotic arms,
mobile devices, and sensing units [9]. FL can also
support with various connectivities, e.g., in V2X
(vehicle to everything), fiber connections for road-
side units, and 6G and Bluetooth for on-board
units [10]. To fully utilize these available AITs, FL
can work synchronously or asynchronously in two
phases, i.e., an initialization phase to activate and
organize FL clients, and an execution phase to
support the client-server interactions.

1) Initialization Phase: Both synchronous FL
(SFL) and asynchronous FL (AFL) need to select
and activate available AITs as FL clients according
to rules and criteria defined by learning tasks, e.g.,
to train a traffic sign detector or a lesion annota-
tor, the rules can be selecting top N clients with
the highest data quality and computing powers,

FIGURE 1. The comparison of CL and FL. Note that in the middle, there are common learning resources and phases used by both CL and FL.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 11,2024 at 03:54:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2024288

and the criteria may include the minimum sam-
ple size, network bandwidth, etc. Moreover, since
the availability of AITs may change over time and
place, it is practical to maintain a sufficient num-
ber of learning participants by selecting FL clients
periodically. Finally, as a best practice to save
communication costs, activated AITs can be orga-
nized in various network topologies according to
their actual running statuses [9].

2) Execution Phase: The interaction between
the server and clients highlights the differences
between SFL and AFL.
•	 Synchronous Mode: All FL clients work at the

same pace. After a start command from the
server is received, FL clients will train and then
upload local models. Meanwhile, the server
will wait for the arrival of all the parameters
and aggregate them to update the global
model. After that, a new learning iteration
starts or the learning ends when a pre-defined
target or constraint (e.g., the minimum error
rate or maximum iteration) is reached.

•	 Asynchronous Mode: All FL clients can work
separately. The server can update the glob-
al model as soon as it receives a certain
number of parameters or triggers a default
timer. Hence, two concurrent threads are
required, i.e., one thread supports the con-
tinuous uploading of local parameters, and
the other thread supports the unblocked
aggregation of local parameters. It is worth
noting that an intermediate buffer exists in
between the two threads to store received
local parameters.
Compared to AFL, SFL is simpler but limited

to supporting diversified AITs, as it requires all
participants to be online until the learning ends
[2]. Since, in reality, the number of AITs can also
grow gradually [4], it can significantly increase

the collaboration complexity of SFL to train an
efficient and effective model based on scarce and
biased data. Even though such complexity can
be reduced by the synchronization between FL
clients and the server, SFL still suffers from the
issue of stragglers, which can lag the whole learn-
ing process, leading to unexpected droppings
of learning performance [9]. In contrast, AFL
has intrinsic advantages in tackling these issues
regarding the intermittency of connections, the
variability of local information, and the unreli-
ability of learning participants, especially when
equipped with dedicated strategies in related
learning steps, e.g., in client selection to activate
clients with high contributions [11], in parame-
ter transmitting to upload local parameters with
scheduled submodels [5], and in model aggre-
gation to process parameters based on fading
weights [4].

Emerging Challenges in AFL
The need for AFL is surging along with the pene-
tration of ubiquitous IoT systems and services, as
there are massive AITs with distinguishable data
and configurations. As such, several challenges
are emerging:
•	 C.1 Function Orchestration: Different from

conventional solutions, AFL requires related
functions to be executed at each client sta-
bly and consistently. Therefore, modularized
functions are needed to orchestrate a uni-
fied and compatible learning process across
AITs [6].

•	 C.2 Client Activation: If a learning cluster is
initialized to use clients randomly, the clients
with biased data may cause the over-learning
issue. Hence, it becomes critical to activate
AITs with sufficient data as AFL clients [11].

•	 C.3 Interaction Optimization: The incremen-
tal exchanges of learning parameters may
disrupt local services and network usage at
AITs. Thus, the asynchronous client-server
interaction shall be optimized to reduce
communication costs, and in turn, improve
service quality [4].

FIGURE 2. The similarities and differences between SFL and AFL. They have a common learning consortium of available AITs, and also
two working phases, i.e., 1) Initialization phase to activate clients according to predefined rules and criteria, and 2) Execution phase
in synchronous or asynchronous modes.

The need for AFL is surging along with the penetration of ubiquitous IoT systems and services, as there
are massive AITs with distinguishable data and configurations.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 11,2024 at 03:54:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2024 289

•	 C.4 Aggregation Enhancement: Besides the
informative difference derived from Non-
IID data, local parameters from AITs may
also vary in staleness. Consequently, how
to aggregate them becomes essential for
AFL to train high-performance global
models [13].

Related Solutions About AFL
To address these challenges, several solutions are
proposed. First, service-centric architectures are
discussed as a preferable choice to deploy AI on
AITs [6]. Even though related solutions, such as
service-oriented architecture, have been utilized,
their actual usage in AFL is rarely observable,
showing a clear gap in orchestrating learning
functions at diversified AITs. Second, strategies
measuring the diversity of local resources are
proposed to select an appropriate set of learning
participants to tackle over-learning issues, e.g.,
AUCTION (Automated and qUality aware Cli-
ent selecTION framework) [11] activating clients
with high-quality data within a limited budget.
However, in general, these solutions rely heavily
on performance tests of trained models, which
may make them behindhand to newly sensed
data. Third, to reduce the network load, three
approaches are discussed, i.e., update compres-
sion, frequency reduction, and model split [5].
Compared with the first two approaches, the
last approach can avoid side effects of informa-
tion loss, e.g., a layer-wise asynchronous model
update strategy with a reduced update fre-
quency of deep layers of DNNs [5]. However,
how to achieve optimal performance in both
learning cost and accuracy is still open for solu-
tions. Finally, as for the model aggregation, since
the information richness and freshness of local
parameters may vary among AFL clients, several

weighing strategies are proposed to harness
them for a performance boost, e.g., heuristic
weights to control the training speed [4], and a
mutual information-driven mechanism to steer
the training direction [13]. However, how to
measure the informative and temporal attributes
jointly is still missing.

As summarized in Table 1, a framework that
can comprehensively address the emerging chal-
lenges is required. Therefore, this paper presents
FedAL, which can orchestrate microservices at
AITs to train DNNs efficiently and effectively.

Proposed FedAL
As shown in Fig. 3, FedAL implements a unified
AFL process consisting of four steps.

Microservice Deployment
FedAL contains a microservice registry to man-
age reusable and re-deployable function units,
e.g., 1) self-activation, local training, and param-
eter uploading microservices for clients, and 2)
parameter receiving and aggregation microser-
vices for the server. Moreover, according to the
task specification, related microservices can be
extracted, customized, and deployed to the clients
and server beforehand. Hence, a collaborative
AFL process can be orchestrated without exces-
sive efforts on reengineering and redevelopment.

Client Activation
Through daily usage, AITs can continuously
sense new data and wait for activation. To select

Solutions
Function
Orchestration

Client
Activation

Interaction
Optimization

Aggregation
Enhancement

Highlights
(+ pros and - cons)

[6]
A software-defined service-centric networking framework:
+ Service-centric to optimize the learning workload
− Weak support for interaction and aggregation

[11]
A quality-aware client-selected federated learning algorithm:
+ Evaluating learning quality to select clients
− Behindhand to newly sensed data

[12]
Asynchronous transmission scheduling algorithms:
+ Adaptive transmission scheduling for AFL
− Over-learning issue caused by Non-IID not addressed

[5]

A resource-efficient learning approach:
+ Training and uploading the assigned submodel per client
+ Layerwise gradient information aggregation
− Layer uploading frequency not optimized
− Over-learning issue undiscussed

[13]
An FL approach with resorting to mutual information
+ Local training and global aggregated steered
− Over-learning issue caused by stragglers not tackled

FedAL (Proposed)

A unified and compatible AFL framework:
+ Microservice orchestration for AFL server and clients
+ Self-information change-based client activation
+ Adaptive layer uploading
+ Fused aggregation weight

TABLE 1. The overall evaluation of reviewed solutions (supported not supported).

Hence, a collaborative AFL process can be orchestrated without excessive efforts on reengineering
and redevelopment.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 11,2024 at 03:54:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2024290

clients from available AITs, an indicator mea-
suring the self-information changes of AITs is
used. Specifically, the information changes can
be computed based on relative entropy or Kull-
back-Leibler Divergence of sensed datasets of
AITs at two different times, e.g., in the t − 1 and
t learning interactions. Accordingly, clients with
changes in the top α percent will be selected to
start the local training, and for those unselected,
they can continue sensing new data and waiting
for the activation in future iterations. Note that
α is a hyperparameter, which can be configured
according to the grid search method or a heuristic
optimizer that can adjust α according to the com-
plexity of tasks and the richness of data.

Client-Server Interaction
Based on protected communication channels
(e.g., encrypted or blockchain-based [8]), the
client-server interaction in FedAL is unbounded.
Hence, local parameters can be on-time received,
late received, or lost. If local parameters are with
the first two statuses, they are well received by
the server, but with a difference in the arrival time,
either before or after a default counter or timer
is triggered. Moreover, based on the observation
that shallow layers of DNNs (i.e., convolutional
layers) are more crucial but with fewer parame-
ters than deep layers (i.e., fully connected layers)
[4], an adaptive parameter uploading strategy,
noted as APU(m, β), is designed to reduce the
communication cost by uploading deep layers
adaptively. Specifically, APU segments the whole
learning process into several learning phases, in
each of which, there are m learning iterations, and
deep layers are uploaded in the last ⎡β × m⎤ itera-
tions. Note that m and β are the hyperparameters,
which can be set either manually according to
prior knowledge or dynamically according to the
runtime feedback generated from a critic (that
can be pre-trained based on meta-learning).

Model Aggregation
Since received parameters can have different lev-
els of staleness and amount of information, an
adaptive aggregation mechanism is implemented

to update the global model by using an adaptive
weight (AW). As for the calculation of AWi for the
ith client, first, a temporal weight TWi is computed
based on the differences between the created
time and received time of the local model. Sec-
ond, an informative weight IWi is calculated by
the information entropy of local data used to
train the local model. Finally, TWi and IWi are
multiplied and normalized among all clients to
generate AWi.

In summary, compared to the current solutions,
first, FedAL can ease the configuration of the
learning process by deploying microservices onto
its clients and server. Second, it can avoid over-
learning issues by selecting AITs with appropriate
data as clients. Third, it can reduce communica-
tion costs without damaging model performance
by optimizing client-server interactions. Finally,
it can enhance the model aggregation by jointly
weighing the temporal and informative attributes.

Case Study and Discussion
FedAL is evaluated together with three baselines,
i.e., FedAvg [7] a widely used synchronous method,
FedAsync [14] a classic asynchronous algorithm,
and FedConD [15] an AFL method considering con-
cept drift caused by continuously increased sensing
data. Note that FedAL has been integrated and pub-
licly available through an open-source project.1

Simulation Setup
First, 50 AITs are visualized with various capabilities
(reflected by the data transmission time ranging
from 10 s to 40 s with a dropping rate ranging
from 1% to 5%) to train a convolutional neural net-
work (CNN) with 2 convolutional layers (shallow
layers) and 2 fully connected layers (deep layers).
Specifically, the two convolutional layers have 32
and 64 channels, respectively, followed by a 2 ×
2 max-pooling layer. The fully connected layer has
256 units followed by a softmax unit as the output
layer. The default local epoch, learning rate, and
batch size are 2, 0.003, and 48, respectively.

Second, gradually increasing and Non-IID data
per client is created based on the training samples
of five standard datasets, i.e., MNIST,2 FMNIST,3

FIGURE 3. The overall architecture and workflow of FedAL. It includes A) microservice deployment to load learning-related functions on
AFL clients and the server; B) client activation to select clients with high information changes; C) client-server interaction to upload
the deep and shallow layers selectively; and D) model aggregation to merge received local parameters based on adaptive weights.

1 https://github.com/Intel-
ligentSystemsLab/generic_
and_open_learning_federator

2 http://yann.lecun.com/
exdb/mnist

3 https://github.com/
zalandoresearch/
fashion-mnist

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 11,2024 at 03:54:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2024 291

German Traffic Sign Benchmark (GTSRB),4 CIFAR-
10,5 and Driver Distraction Detection (3D)
dataset.6 MNIST and FMNIST are two widely used
classification datasets about handwritten digits
and fashion images, respectively. As for GTSRB,
it consists of 43 classes, e.g., speed limit, chil-
dren crossing and ahead only. CIFAR-10 and 3D
datasets contain 10 classes about traffic means/
animals (such as airplanes and birds) and driver
statuses (such as safe driving and talking to pas-
sengers), respectively. In general, the local data
of AITs will have an initial portion of about 6% to
12%, and increase by 2%–4% or 0.2%–0.4% per
learning iteration to simulate the arrival of new
data in the real world. Note that the test samples
of the five datasets are kept untouched and only
used to evaluate model accuracy.

Finally, FedAvg (with C in [7] = 0.1), FedAsync
(with a and μ in [14] = 0.5 and 1, respectively),
FedConD (with γ in [15] = 0.2), and the proposed
FedAL are compared through three evaluation
metrics, namely model accuracy, communica-
tion cost, and transmission time. Specifically, the
model accuracy is tested on the global model
updated at the server by using the test samples.
The communication cost accumulates the size of
local parameters transmitted over the network.
The transmission time is the sum of the waiting
time to start an aggregation in the server, which
also reflects the overall communication delay.

Results and Discussion
FedAL is evaluated with the three baselines to
reveal related improvements achieved in transmis-
sion time, communication cost, model accuracy,
and learning stability.

1) Transmission Time: As shown in Fig. 4A, a
minor delay is experienced in AFL methods, as the
stragglers, which are the bottlenecks of FedAvg
in SFL, can be addressed by the unblocking cli-
ent-server interaction. While comparing FedAsync
and FedConD with FedAL, a clear gap in accuracy
growth rate and stability can be observed. More-
over, when the target accuracy of 80% is first
achieved, the delay of FedAL (920s) is approxi-
mately 48.83% lower than that of the second-best
method FedAsync (1798s).

2) Communication Cost: As shown in
Fig. 4B, FedAsync consumes more communication
resources to be comparable with the rest three
methods. Another AFL method FedConD shares
a similar learning curve with the SFL method Fed-
Avg, which indicates the superiority of selective
communication strategy. While comparing the com-
munication cost of FedAL (4.06GB) at the target
accuracy with the secondbest method FedConD
(13.46GB), a reduction of 69.84% can be further
achieved since the local model parameters are selec-
tively uploaded and adaptively aggregated in FedAL.

3) Model Accuracy: As shown in Fig. 4A, when
the maximum learning time is exceeded, FedAL
can reach the highest model accuracy of 88.74%,
with an improvement of about 44.20%, 2.58%, and
9.54% compared to FedAvg (61.54%), FedAsync
(86.51%), and FedConD (81.01%), respectively.

4) Learning Stability: As illustrated in Table 2
the local accuracies of FedAL in various settings
of the three hyperparameters, i.e., α, m, and β,
are compared with the three baselines. First, as
for APU (m, β), it is correlated to the learning
tasks and more complicated tasks may need a
higher m and lower β to achieve the best perfor-
mance. Second, FedAL with α = 0.7 outperforms
the baselines and other FedAL settings on three
datasets (except for CIFAR-10 with α = 0.8). The
results indicate that an appropriate number of
activated clients controlled by α is essential for
FedAL to achieve optimal performance.

In summary, due to its ability in selecting clients
with sufficient data and self-information changes,
transmitting local updates with a distinguishable
and adjustable frequency, and updating the global
model according to adaptive weights that mea-
sure the staleness and richness of received local
parameters in each asynchronous learning round,
FedAL outperforms the three baselines with
higher learning accuracy and stability, as well as
lower communication delay and cost.

FIGURE 4. Comparison between FedAL and three baselines on GBSRB dataset. A) Model accuracy vs. transmission time; and B) model
accuracy vs. communication cost. It shows that the proposed FedAL can achieve the target accuracy more rapidly with fewer
communication costs.

FedAL is evaluated with the three baselines to reveal related improvements achieved in transmission
time, communication cost, model accuracy, and learning stability.

4 https://bitbucket.org/
jadslim/german-traffic-signs

5 https://www.cs.toronto.
edu/kriz/cifar.html

6 https://www.kaggle.
com/c/state-farm-
distracted-driver-detection

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 11,2024 at 03:54:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2024292

Conclusion
This article has first compared FL with CL to
elucidate its advantages in accommodating
distributed AITs in a collaborative and privacy-pre-
serving way. Moreover, AFL has been compared
with the widely discussed SFL to reveal its merits
in supporting diversified AITs with heterogeneous
configurations. After that, by identifying encoun-
tered challenges and flaws of related solutions
about AFL to support AITs, FedAL has been pro-
posed, which implements a unified AFL framework
with microservice deployment, client activation,
client-server interaction, and model aggregation
to train DNNs efficiently and effectively. Finally, a
case study simulating a real-world scenario of AITs
has been given to comparing FedAL with three
baselines, i.e., FedAvg, FedAsync, and FedConD. It
shows that compared to the second best method,
FedAL can improve the performance significantly,
i.e., increasing model accuracy by 2.58%, reducing
communication delay by 48.83%, and saving com-
munication cost by 69.84%.

This study suggests several interesting research
directions that can be:
•	 Easy-to-Install Containers: The running of

microservices at AITs depends on a visual-
ized container, which is still burdensome to
install. Therefore, a simplified procedure can
be designed and implemented to further lift
the usability and compatibility of FedAL;

•	 Global Data Quality Indicators: Even though
the adaptive client activation and model
aggregation implemented in FedAL can sig-
nificantly remedy the over-learning issue, the
impact of Non-IID data still remains as cur-
rently the quality of data is measured in iso-
lation. Hence, indicators with global probes
in AITs can be investigated to fully resolve
the over-learning issue in FedAL;

•	 Cost-Effective Incentive Mechanisms: It is
unfair for participants who contribute the
most to be treated the same as slackers.
Moreover, it is ideal for collaborators to
maximize benefits while minimizing costs.
Thus, incentive mechanisms can be studied

to foster an active and reputable consortium
of AITs for FedAL.

Acknowledgment
This work was supported in part by the National
Natural Science Foundation of China under
Grant 62002398, in part by the Guangdong
Basic and Applied Basic Research Foundation
under Grant 2023A1515012895, in part by the
National Research Foundation Singapore under
the AI Singapore Programme under AISG Award
AISG2-TC-2023-008-SGKR, and in part by the U.S.
National Science Foundation under Grant CNS-
2128448 and Grant ECCS-2335876.

References
[1] I. A. Ridhawi et al., “Generalizing AI: Challenges and oppor-

tunities for plug and play AI solutions,” IEEE Netw., vol. 35,
no. 1, pp. 372–379, Jan./Feb. 2021.

[2] M. Chen et al., “Wireless communications for collaborative
federated learning,” IEEE Commun. Mag., vol. 58, no. 12, pp.
48–54, Dec. 2020.

[3] D. C. Nguyen et al., “Federated learning for Internet of
Things: A comprehensive survey,” IEEE Commun. Surveys
Tuts., vol. 23, no. 3, pp. 1622–1658, 3rd Quart., 2021.

[4] L. You et al., “A triple-step asynchronous federated learning
mechanism for client activation, interaction optimization,
and aggregation enhancement,” IEEE Internet Things J., vol.
9, no. 23, pp. 24199–24211, Dec. 2022.

[5] R. Yu and P. Li, “Toward resource-efficient federated learning
in mobile edge computing,” IEEE Netw., vol. 35, no. 1, pp.
148–155, Jan./Feb. 2021.

[6] X. Li et al., “Advancing software-defined service-centric net-
working toward in-network intelligence,” IEEE Netw., vol. 35,
no. 5, pp. 210–218, Sep./Oct. 2021.

[7] B. McMahan et al., “Communication-efficient learning of
deep networks from decentralized data,” in Proc. 20th Int.
Conf. Artif. Intell. Statist., 2017, pp. 1273–1282.

[8] N. R. Pradhan et al., “A blockchain based lightweight peer-to-
peer energy trading framework for secured high throughput
micro-transactions,” Sci. Rep., vol. 12, no. 1, Aug. 2022, Art.
no. 14523.

[9] H. Yang et al., “Lead federated neuromorphic learning for
wireless edge artificial intelligence,” Nature Commun., vol.
13, no. 1, p. 4269, Jul. 2022.

[10] B. Yang et al., “Edge intelligence for autonomous driving
in 6G wireless system: Design challenges and solutions,”
IEEE Wireless Commun., vol. 28, no. 2, pp. 40–47, Apr.
2021.

[11] Y. Deng et al., “Auction: Automated and quality-aware client
selection framework for efficient federated learning,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 8, pp. 1996–2009,
Aug. 2022.

Method
Dataset*

MNIST FMNIST GBSRB CIFAR - 10$ 3D

FedAvg 94.41±0.04% 61.42±0.11% 74.39±0.10% 49.06±0.03% 83.38±0.45%

FedAsync 95.72±0.03% 67.62±0.24% 78.38±0.77% 34.57±0.26% 86.16±1.51%

FedConD 96.91±0.10%† 71.87±0.21% 83.70±0.10% 48.51±0.05% 91.82±0.63%

FedAL

α = 0.6 98.16±0.41% 72.04±0.11% 87.52±0.09% 49.39±0.18% 93.83±0.44%

α = 0.7 98.73±0.21%§ 72.69±0.08% 89.72±0.03% 49.87±0.15% 94.21±0.30%

α = 0.8 98.50±0.14% 72.23±0.11% 87.70±0.07% 50.68±0.14% 92.05±0.17%

*For MNIST, FMNIST, GBSRB, CIFAR-10, and 3D datasets, the best settings of APU (m, β) in FedAL are APU (3, 1
3), APU (4, 1

4), APU (6, 1
6), APU (3, 1

3), and APU (4, 1
4), respectively, according to the

preliminary experimental results. In addition, a counter is used in FedAL to control the asynchronous model aggregation, which makes the number of actual participants in each round the same
as FedAvg for a fair comparison.
$The results of CIFAR-10 are not competitive, as CIFAR-10 presents a more complex classification task compared to the rest four datasets, and the common CNN model used in the evaluation is
relatively simple with two convolutional layers and two fully connected layers.
†Numbers with underlines are the best values achieved by the baselines.
§Bold numbers are the best performance among all methods.

TABLE 2. Local accuracies of compared methods.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 11,2024 at 03:54:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2024 293

[12] H.-S. Lee and J.-W. Lee, “Adaptive transmission scheduling
in wireless networks for asynchronous federated learning,”
IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3673–3687,
Dec. 2021.

[13] M. P. Uddin et al., “Mutual information driven federated
learning,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 7,
pp. 1526–1538, Jul. 2021.

[14] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated
optimization,” in Proc. 12th Annu. Workshop Optim. Mach.
Learn., 2020, pp. 1–11.

[15] Y. Chen et al., “Asynchronous federated learning for sensor
data with concept drift,” in Proc. IEEE Int. Conf. Big Data (Big
Data), Dec. 2021, pp. 4822–4831.

Biographies
Linlin You (Senior Member, IEEE) received the Ph.D. degree
from the University of Pavia, Italy, in 2016. He is currently an
Associate Professor with Sun Yat-sen University and also a
Research Affiliate with the Massachusetts Institute of Technol-
ogy. His research interests include smart cities and federated
learning.

Sheng Liu (Graduate Student Member, IEEE) received the B.Eng.
degree from Sun Yat-sen University, China, in 2021. He is cur-
rently pursuing the master’s degree with Sun Yat-sen University.
His research interests include artificial intelligence and federated
learning.

Bingran Zuo received the Ph.D. degree from Shanghai Jiao
Tong University, China, in 1998. He is currently a Principal
Research Fellow and Deputy Director with the Rehabilitation
Research Institute of Singapore, Nanyang Technological Univer-
sity. His interests include robotics, human ability digital twin, and
machine learning techniques.

Chau Yuen (Fellow,IEEE) (chau.yuen@ntu.edu.sg) received the
Ph.D. degree from Nanyang Technological University, Singa-
pore, in 2004. He is currently an Associate Professor with the
Nanyang Technological University. He received the IEEE Com-
munications Society Fred W. Ellersick Prize (2023) and IEEE Mar-
coni Prize Paper Award in Wireless Communications (2021). He
is also a Highly Cited Researcher by Clarivate Web of Science.

Dusit Niyato (Fellow, IEEE) received the Ph.D. degree from
the University of Manitoba, Canada, in 2008. He is currently a
Professor with Nanyang Technological University. His research
interests include sustainability, edge intelligence, decentralized
machine learning, and incentive mechanism design.

H. Vincent Poor (Life Fellow, IEEE) received the Ph.D. degree
from Princeton University in 1977. He is currently the Michael
Henry Strater University Professor with Princeton. His interests
include wireless networks, energy systems, and related fields.
Among his publications is the recent book titled Machine Learn-
ing and Wireless Communications (Cambridge University Press,
2022). He received the IEEE Alexander Graham Bell Medal in
2017.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 11,2024 at 03:54:08 UTC from IEEE Xplore. Restrictions apply.

