
FedRC: Representational Consistency Guided
Model Uploading Mechanism for Asynchronous

Federated Learning

Sheng Liu1 , Linlin You1(B) , and Yuren Zhou2

1 School of Intelligent Systems Engineering, Sun Yat-Sen University, Shenzhen, China
liush235@mail2.sysu.edu.cn, youllin@mail.sysu.edu.cn

2 Engineering Product Development, Singapore University of Technology and Design,
Singapore, Singapore

Abstract. Recently, a novel distributed machine learning paradigm called Fed-
erated learning (FL) has caught the eyes of both academics and industries, as it
can orchestrate substantial Internet of Things (IoT) devices as clients to learn
a global model collaboratively and efficiently without sharing sensitive data.
Moreover, while comparing the two modes of FL, i.e., synchronous FL (SFL)
and asynchronous FL (AFL), AFL is more scalable and flexible to address the
issue of over-fitting and the performance bottleneck caused by the stragglers.
However, the data heterogeneity and high communication consumption issues
faced by AFL still hamper its further applications and deployments in ubiquitous
IoT. Motivated by this, we propose FedRC, a model uploading mechanism for
AFL, guided by Representational Consistency (RC). As a layer-wise uploading
method for Deep Neural Networks (DNNs), FedRC calculates simplified Repre-
sentational Dissimilarity Vectors (RDVs) for each local layer and corresponding
global layer, respectively, after the local training of each client, and then mea-
sures RCs based on the two RDVs to adaptively determine the uploading of model
layers. According to the evaluation based on three standard datasets, compared
with four state-of-the-art baselines (i.e., FedAvg, FedProx, FedAsync, and Par-
tialNet), FedRC can boost model accuracy by 3.48%, save communication costs
by 26.79%, and shorten transmission time by 44.14%, respectively.

Keywords: Federated Learning · Asynchronous Federated Learning · Deep
Neural Networks (DNNs) · Model Uploading

1 Introduction

With the rapid development of IoT (Internet of Things), significant amounts of data are
generated from massive smart devices such as Unmanned Aerial Vehicles, Intelligent
Connected Vehicles, and medical robots [36,39]. Traditionally, these large amounts
of data are transmitted to the data centers for utilization. However, this centralized

This research was funded by the National Natural Science Foundation of China (62002398) and
the Collaborative Innovation Center for Transportation of Guangzhou (202206010056).

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024
Published by Springer Nature Switzerland AG 2024. All Rights Reserved
A. Zaslavsky et al. (Eds.): MobiQuitous 2023, LNICST 593, pp. 239–256, 2024.
https://doi.org/10.1007/978-3-031-63989-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63989-0_12&domain=pdf
http://orcid.org/0000-0002-9883-5289
http://orcid.org/0000-0001-6287-8095
http://orcid.org/0000-0003-4308-2715
https://doi.org/10.1007/978-3-031-63989-0_12

240 S. Liu et al.

pattern is facing three main challenges, including large communication costs, privacy
protection difficulties, and unbalanced computation loads between the center and edge
devices.

In this context, a novel distributed learning paradigm, called Federated Learning
(FL) [21], starts to attract more attention in both academic and industrial communi-
ties. In general, a FL system consists of one server and multiple clients to train a global
model collaboratively and iteratively through multiple learning rounds. In each commu-
nication round, clients first receive the latest global model from the server, then perform
local training based on their own datasets. Lastly, local model updates are uploaded to
the server for aggregation to update the global model.

Since raw data are unexposed and edge resources are utilized, FL is more suitable to
support ubiquitous IoT [16,40], and has been widely applied to various data-sensitive
domains, e.g., to achieve the early-stage detection of dementia disease by sensors in
smart homes [13], to perform image process and object detection by RSUs (Road-Side
Units) in smart transportation [20], to identify suspicious transactions by banks in smart
fintech [17], to recognize human activities by mobile phones in smart lives [5], etc.

Furthermore, according to the collaboration type of clients, FL can be divided into
synchronous FL (SFL) and asynchronous FL (AFL) [1,38]. In SFL, a randomly selected
or pre-selected subset of clients will participate in a certain round, and the server will
execute the global aggregation process after all the participants have uploaded their
local models successfully [21]. However, SFL has to wait for the stragglers (who may
fail the training or communication process due to power-off or poor connection) in every
round, which impedes the actual deployment of SFL. On the contrary, in AFL, clients
can work individually and asynchronously, and the server will update the global model
immediately once the pre-defined condition is satisfied (such as the maximum wait-
ing time is reached or a certain number of updates are received) without unnecessary
waiting [10,34].

Although AFL can improve scalability compared with SFL, it still faces two urgent
challenges that affect the Quality of Service (QoS), namely:

– Data Heterogeneity: Since the sharing of raw data among clients is unallowed, local
models of each client are trained and uploaded separately according to data collected
with specific user preferences, which results in an intrinsic issue faced by AFL, i.e.,
strongly Non-IID (Non-Independent and Identically Distributed) data. Moreover, the
staleness model caused by the asynchronous mode exacerbates the heterogeneous
problem. Such an issue can degrade the learning performance of AFL significantly,
as the representation of trained models can be partial [28].

– Communication Resource Constraints: First, the communication resources of
edge clients are limited (restricted by hardware and software configurations) and
may change over time (such as shifting between 5G and Wi-Fi). Second, each client
needs to interact with the AFL server iteratively, which may become intrusive for
other service co-running at the edge. The uncontrolled or unrestricted utilization of
communication resources may easily become the bottleneck of IoT for the actual
deployment. Finally, the communication burden of the AFL server can be large,
since all clients are interacting with the AFL server frequently. Hence, training a
global model with light communication costs is of significance to the development
of AFL [7].

FedRC 241

Accordingly, several solutions have been proposed to tackle these two challenges,
such as adopting informative aggregation strategies to solve the data heterogeneity issue
[30,37] and employing compression methods to reduce communication costs [18].
Specifically, to support the training of DNNs (Deep Neural Networks), a novel idea
that can resolve the two issues simultaneously is to upload deep and shallow layers
separately, as shallow layers contain fewer parameters while extracting more general
features compared with deep layers [3,15,37]. However, currently, the fixed uploading
frequency of different layers can not quantize the data heterogeneity level dynamically,
and may also deteriorate the overall model performance. Such that, an adaptive mech-
anism, which measures the layer heterogeneity level caused by data heterogeneity for
each client and only uploads those “fine” layers in each round to improve learning per-
formance as well as save communication resources, is still missing.

To fill this gap, this paper proposes FedRC, a model uploading mechanism for
AFL, guided by Representational Consistency (RC). To measure the layer heterogeneity
adaptively, for each global layer and corresponding local layer, a simplified Representa-
tional Dissimilarity Vector (RDV) is calculated based on stimuli and pairwise distance
functions after the local training and before the local model uploading. Then, the RC
is computed according to the two RDVs, and utilized as the probability of uploading
the local layer. Finally, after local layers are uploaded, each layer is aggregated at the
server separately to form the layer-wise global model.

Accordingly, the main contributions of this paper are summarized as follows.

– This paper proposes a novel layer-wise uploading mechanism based on RC, called
FedRC, to jointly address data heterogeneity and communication resource con-
straints issues faced by AFL.

– This paper designs a simplified version of RDM for the calculation of RC, named as
RDV, to reduce the computation complexity significantly, and then, utilizes RC as
the uploading probability of each layer in a round, to avoid the additional training of
threshold.

– This paper evaluates FedRC based on three standard datasets (i.e., MNIST, FMNIST,
and CIFAR-10), and compared with four state-of-the-art baselines (i.e., FedAvg,
FedProx, FedAsync, and PartialNet), FedRC can improve model accuracy by 3.48%,
reduce communication costs by 26.79%, and shorten transmission time by 44.14%
simultaneously and respectively.

The remainder of this paper is organized as follows. First, Sect. 2 summarizes
related work about AFL, model uploading methods, and similarity-based FL. Second,
FedRC is presented and evaluated in Sect. 3 and Sect. 4, respectively. Finally, Sect. 5
concludes the work and sketches the future research directions.

2 Related Work

In this section, first, AFL is introduced briefly as the background; then current model
uploading strategies for communication cost reduction are summarized; finally, the
development of similarity in FL is reviewed. Note that the key related work is sum-
marized in Table 1.

242 S. Liu et al.

Table 1. The summary of key related work.

Group Resolved Issue Reference Main contributions

Model
Uploading

Update
compression

[6] Compressing gradients periodically and using local gradient tracking

[35] Introducing a self-learning quantization factor

[29] Combining NOMA with adaptive gradient quantization

[26] Presenting a Kashin compression method

Topology
optimization

[2] Bridging SFL and AFL through tiers

[9] Introducing a multi-layer hybrid learning framework called fog
learning

Model
split

[8] Utilizing ordered dropout to extract lower footprint sub-models of
DNNs

[15] Uploading the deep and shallow layers of DNNs with different
frequencies

Similarity
Analysis

Clustering [27] Grouping clients with similar data distributions by multitask learning

[23] Using pairwise client gradients to compute similarity for clustering

RSA [22] Introducing RC to investigate the individual differences among DNNs

[15] Employing RC as adaptive weights to enhance global aggregation for
AFL

2.1 Asynchronous Federated Learning

FedAsync is the first and the canonical AFL algorithm [34]. In FedAsync, the server
will update the global model with a hyper-parameter related to the staleness in a
weighted aggregation way after receiving a single local model from any client. ASO-
Fed improves FedAsync by feature representation and dynamic learning rate, and sup-
ports online learning with continuous streaming local data [4].

However, such fully asynchronous methods have an unsteady learning process with
model accuracy degraded, as the participant frequency and staleness among clients exit
significant differences. Besides, significant transmission costs are also required because
of the frequent interaction between clients and the server. Such that, FedSA [19] and
SAFA [33] are proposed, which allowmultiple clients instead of one client to participate
in a global round and optimize the parameters of the learning process.

2.2 Model Uploading Methods

In general, the model uploading methods for communication cost reduction can be sum-
marized in three ways, i.e., update compression, topology optimization, and model split,
as illustrated in Table 1 “Model Uploading” group.

First, update compression refers to encoding and uploading updates by a smaller
number of bits. Specifically, Haddadpour et al. [6] proposed FedCOMGATE: a feder-
ated averaging algorithm with compression and local gradient tracking for the hetero-
geneous setting; Xu et al. [35] designed FTTQ, which introduced a self-learning quanti-
zation factor to reduce the transmission of redundant parameters; Sun et al. [29] utilized
adaptive gradient quantization and sparsification to facilitate the uploading scheme;
Safaryan et al. [26] proposed Kashin compression: an unbiased compression method
inspired by the Kashin representation of vectors.

FedRC 243

Table 2. The summary of notations used in this paper.

Notation Meaning

K The total number of clients

Kt The number of participants in the tth round

wk The local model of client k

Dk The local dataset of client k

|Dk| The local data size of client k

wt The global model in the tth round

Fk(wk) The local loss function of client k

η The learning rate

L The total number of layers

wl
k The lth layer of local model wk

Kl
t The number of uploaded lth layer in the tth round

M The stimulus set

h The total number of stimuli

oli The output vector of the lth layer on the stimulus i

P l The output dimension of the lth layer

E The dimension of RDV

Second, as for topology optimization, the novel idea is to design a hierarchical com-
munication network, in which, each device only connects to a sub-center for relay
uploading, and the server interacts with sub-centers periodically. E.g., Chai et al. [2]
presented a tier-based mechanism named FedAT, which adopted a three-layer commu-
nication structure bridging SFL and AFL; and Hosseinalipour et al. [9] advocated fog
learning as a multi-layer hybrid learning framework to achieve efficient communication
based on flexible topology.

Finally, regarding the model split, the model parameters are split by various strate-
gies for communication cost savings. E.g, Horvath et al. [8] proposed ordered dropout,
which allowed each client to only train and upload a submodel of original DNNs; Chen
et al. [3] and Liu et al. [15] both split the uploading schemes of deep and shallow lay-
ers of DNNs; and Wu et al. [32] presented FedKD based on adaptive mutual knowledge
distillation, in which, a mentee model and a mentor model were learned from each other
but only the parameters of mentee model were uploaded by clients.

2.3 Similarity Analysis in FL

As listed in Table 1 “Similarity Analysis” Group, it has been widely discussed in FL
to discover divergent clients or boost the convergence speed [31]. Specifically, most
related researches focus on the cluster of clients using different similarity measures,
e.g., Sattler et al. [27] introduced clustered FL, which grouped clients with similar data

244 S. Liu et al.

Table 3. The summary of abbreviations in this paper.

Abbr Description

IoT Internet of Things

FL Federated Learning

SFL Synchronous Federated Learning

AFL Asynchronous Federated Learning

DNNs Deep Neural Networks

QoS Quality of Service

RSA Representational Similarity Analysis

RDM Representational Dissimilarity Matrix

RDV Representational Dissimilarity Vector

RC Representational Consistency

Non-IID Non-Independent and Identically Distributed

distributions in multitask learning; and Palihawadana et al. presented FedSim [23],
which clustered clients with similar gradients and utilized a metric called Privacy-
preserving Non-IID Index to discover the relationship between similarity and Non-IID.

However, the Representational Similarity Analysis (RSA) [11,12,22], which can
characterize the inner stimulus representation of DNNs, has not yet been explored in
FL for the optimization of uploading. Even though Liu et al. [15] proposed Fed2A,
which introduced RSA into AFL and computed the representational consistency as the
adaptive weight in the global aggregation process, RSA is still not used in the model
uploading process.

In general, AFL is more suitable for ubiquitous IoT because of its flexibility and
scalability. However, the high communication consumptions impede its further applica-
tion. Accordingly, update compression, topology optimization, and model split meth-
ods are widely studied to save communication resources. Whereas, side-effects such
as performance dropping are also observed, and similarity-based methods,e.g., RSA,
still need further exploration for the layer-wise uploading of DNNs, which are the key
purposes of FedRC.

3 Methodology

As shown in Fig. 1, FedRC is proposed to optimize the uploading stage of AFL to save
communication costs but without compromising QoS. In this section, first, the problem
formulation is described; then the details of FedRC are presented; finally, the algorithm
of FedRC is introduced. For ease of expression, the key notations and abbreviations
used in this paper are summarized in Table 2 and Table 3, respectively.

FedRC 245

Fig. 1. The overall diagram of FedRC.

3.1 Problem Formulation

We consider an AFL system with total K clients, and each client k trains a local model
wk on its local dataset Dk with the size of |Dk|. Accordingly, the loss function of client
k is defined as Formula 1,

Fk(wk) =
1

|Dk|
∑

dk,i∈Dk

f(dk,i;wk) (1)

where Dk holds the training samples dk,1, dk,2, ..., dk,|Dk|, and f(·) is a user-specified
loss function, such as cross entropy and mean squared error.

After client k receives a global modelwtk in the tthk global round, it conducts several
local iterations for local update by formula 2,

wk = wtk − ηF ′(wtk ,Dk) (2)

where η is the learning rate, and F ′(·) is the gradients. Note that in AFL, for two dif-
ferent clients i and j, ti is not necessarily equal to tj , so as wti and wtj .

Once the training of wk is finished, wk is uploaded to the server for global aggre-
gation. Since in AFL, the aggregation process is unblocked, it can be triggered by a
pre-defined condition, such as the maximum waiting time and the certain number of
received local models of the server. Furthermore, the global updating can be executed
by Formula 3,

wt+1 =
Kt∑

k=1

(
|Dk|
|Dt| × wk) (3)

246 S. Liu et al.

Fig. 2. The schematic diagram of FedRC for a client in a certain round.

where Kt and Dt are the number of participants and the total training samples in the
tth global round, respectively.

In this paper, we focus on the training of DNNs, hence wk consists of multiple
layers, which are denoted as L. Intuitively, the data heterogeneity brings model hetero-
geneity, i.e., layer heterogeneity. Moreover, deep layers (such as fully connected layers)
contain many more parameters to learn ad hoc features compared with shallow layers
(such as convolutional layers) [3]. Therefore, a layer-wise model uploading strategy
is more suitable for AFL considering data heterogeneity and limited communication
resources. In this context, we rewrite Formula 3 to Formula 4,

wt+1 =
L∑

l=1

Kl
t∑

k=1

(
|Dk|
|Dl

t|
× wl

k) (4)

where wl
k is the lth layer of wk; Kl

t is the number of uploaded local layer l in the tth

round; and Dl
t =

∑Kl
t

k=1 Dk. Such that, the essential problem is determining whether to
upload wl

k in each round, which is solved by FedRC.

3.2 Details of FedRC

To measure the layer importance adaptively and guide the layer-wise model uploading
strategy, Representational Similarity Analysis (RSA) [25] is adopted by FedRC. As
shown in Fig. 2, given a set of stimuli M = {m1,m2, ...,mh}, traditional RSA needs
to compute a Representational Dissimilarity Matrix (RDM) with size h × h according
to Formula 5,

RDM [i, j] = g(oli, o
l
j), i, j ≤ h (5)

FedRC 247

where oli = ol(mi) denotes the output vector of lth layer given stimula mi; and g(·)
measures the distance between two vectors, such as cosine distance (Formula 6), corre-
lation distance (Formula 7), and Euclidean distance (Formula 8).

cos(oli, o
l
j) =

oli · olj
|oli||olj |

(6)

cor(oli, o
l
j) = 1 − Cov(oli, o

l
j)

√
D(oli)

√
D(olj)

(7)

euc(oli, o
l
j) =

√√√√
P l∑

p=1

(oli(p) − olj(p))2 (8)

Note that the stimuli set M are prepared by the server according to public datasets
and then are transmitted to all clients for computation. To reduce the computational
complexity, we only randomly select and calculate E elements of the RDM to form
a Representational Dissimilarity Vector (RDV). Such that, the simplified Representa-
tional Consistency (RC) between the global layer and local layer is defined according
to Formula 9,

RCl(RDV l
glo, RDV l

loc) = ρ(RDV l
glo, RDV l

loc)
2 (9)

where ρ is the Pearson correlation coefficient.
A threshold can be designed to decide whether to upload wl

k according to RCl
k.

However, such a threshold is a hard-coded uploading condition, and it requires strong
experience or multiple experiments to set an appropriate threshold. To overcome this
problem, FedRC introduces probability. Note that 0 ≤ RC ≤ 1, hence RCl can be
used as the probability of uploading the lth layer. To further regulate the probability to
a proper scale, Min-Max normalization is employed according to Formula 10.

pro(wl
k) =

RCl
k − min(RCl)

max(RCl) − min(RCl)
(10)

3.3 Algorithm of FedRC

As shown in Algorithm 1, FedRC consists of two parts, namely:

Part 1: (in Each AFL Client). First, each AFL client k receives the global model wtk

from the server in the tk round. Second, client k clones wtk as the initialized local
model wk currently. Third, wk is updated based on local dataset Dk. Fourth, the repre-
sentational consistency RCl

k is calculated for each layer. Finally, wl
k is uploaded to the

server-side with a probability computed by Formula 10.

248 S. Liu et al.

Algorithm 1. The proposed FedRC algorithm
PART 1: Executed in each AFL client

1: for k ≤ K in parallel do

2: Receiving the global model wtk

3: wk = wtk

4: Training the local model wk with Dk

5: for layer l ∈ L do

6: Calculating RCl
k by Formula 9

7: Calculating pro(wl
k) by Formula 10

8: Uploading wl
k with probability pro(wl

k)

9: end for

10: end for

PART 2: Executed in the AFL server

1: Thread 1: Receiving local models continuously

2: Thread 2: Aggregating local models periodically

3: while the aggregation condition is triggered do

4: for l ≤ L do

5: wl
t+1 =

∑Kl
t

k=1(
|Dk|
|Dl

t| × wl
k)

6: end for

7: wt+1 =
∑L

l=1 wl
t+1

8: Transmitting wt+1 to clients

9: Increasing the global round t to t + 1

10: end while

Part 2: (in the AFL Server). First, the AFL server receives local models from clients
consistently. Second, once the aggregation condition is triggered, the server will update
the global model layer by layer. Finally, the new global model wt+1 is transmitted to
the client-side and the next global round begins.

Accordingly, the time complexity of the algorithm is O(L×h×emax), where emax

denotes the maximum dimension of the output among the L layers. Although FedRC
introduces additional computation for RC, the cost is actually negligible compared with
the local training of DNNs.

In summary, as a layer-wise uploading AFL mechanism for the training of DNNs,
FedRC introduces a simplified RC as the probability of transmission for each local
layer at the client-side, while the server receives and aggregates local layer updates to
improve the global model.

FedRC 249

4 Experiment and Discussion

This section first describes the preparation of the experiment and then analyses the per-
formance of FedRC comprehensively. Finally, the pros and cons of FedRC are further
discussed based on the observations from experimental results.

4.1 Experiment Setting

We set up an AFL system comprising one server and 80 clients to evaluate the effec-
tiveness and efficiency of FedRC. Note that the transmission time of clients ranges
from 3 s to 30 s, and the AFL server aggregates the global model every 5 s. The system
is developed based on TensorFlow libraries by using Python language, and we execute
the experiment on a hardware device equipped with 4 NVIDIA GeForce RTX 3090
GPUs with 24GB RAM based on Windows 10 Pro and CUDA v11.4.

Datasets and Models. The evaluations are conducted on three public datasets to train
three corresponding CNN models. The default training settings are summarized in
Table 4, and the details of datasets and corresponding model structures are listed as
below:

– MNIST1: Modified National Institute of Standards and Technology dataset contains
60,000 handwritten digits for training and 10,000 for the test, with 10 labels and the
image size of 28×28×1. The CNN model has two stacked 5×5 convolution layers
(32, 64 channels) followed by a 2× 2 max pooling layer, two fully connected layers
(128, 256 units) with relu activation function, and a softmax layer (10 units).

– FMNIST2: Fashion MNIST dataset has the same number of training samples, test-
ing samples, and labels as MNIST. However, the images of FMNIST are clothes
such as shirts and coats, which are more challenging to be classified correctly. The
corresponding CNN model also shares the same structures as MNIST.

– CIFAR-103: CIFAR-10 dataset comprises 60,000 32 × 32 × 3 colour images in 10
classes (such as the airplane and frog), with 6,000 images per class. There are 50,000
training images and 10,000 testing images. Since the task complexity is high, the
CNN layers of CIFAR-10 have doubled channels or units compared with MNIST,
and the other configurations are the same as MNIST.

Data Partition. To simulate a real-world IoT scenario, instead of IID data, we prepare
Non-IID data based on the three datasets according to [3]. Specifically, for a dataset
(i.e., MNIST, FMNIST, or CIFAR-10), each client is assigned with a data partition
with training samples ranging from 500 to 1,500, and label numbers ranging from 1 to
6. Note that the fraction of each category in a partition is also imbalanced. As for the
testing samples, they are untouched in the learning process and only used for evaluation.

1 http://yann.lecun.com/exdb/mnist.
2 https://github.com/zalandoresearch/fashion-mnist.
3 https://www.cs.toronto.edu/∼kriz/cifar.html.

http://yann.lecun.com/exdb/mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html

250 S. Liu et al.

Table 4. The summary of training setting.

Term MNIST FMNIST CIFAR-10

Local epoch 5 5 5

Learning rate 0.003 0.001 0.001

Batch size 48 48 48

Optimizer SGD Adam Adam

Benchmarks and Performance Metrics. Four state-of-the-art methods are adopted as
the benchmarks for performance comparison, namely:

– FedAvg [21]: The canonical FL method proposed by Google, which selects partici-
pants randomly and aggregates local models averagely.

– FedProx [14]: It is a variant of FedAvg, which adds a proximal term μ on the local
optimization function to address the data heterogeneity issue.

– FedAsync [34]: It is a popular AFL algorithm, which updates the global model
immediately after receiving a local model according to a mixed hyperparameter α.

– PartialNet [24]: It is a communication-efficient FL algorithm, which only transmits
the parameters of the largest layer of DNNs in each round.

To evaluate the learning performance, three metrics are used, i.e., 1) the maximum
test accuracy during the training process according to Formula 11, where TP, TN, FP,
and FN denote true positives, true negatives, false positives, false negatives, respec-
tively; 2) the transmission time accumulated when the target accuracy (i.e., 90%, 85%,
and 50% for MNIST, FMNIST, and CIFAR-10, respectively) is first reached; and 3) the
total communication cost when the target accuracy is reached, which is calculated by
Formula 12, where nr

parameter represents the size of uploaded parameters in the rth

round.

acc =
TP + TN

TP + FP + FN + TN
(11)

costtarget =
rtarget∑

r=1

(
4 × nr

parameter

1024 × 1024
) (12)

4.2 Performance Evaluation

First, stimuli sets are needed to calculate RC for the uploading probability of model
layers. Specifically, for each dataset, 100 images (10 categories × 10 stimuli) from
the testing samples are prepared as the stimuli, and the dimension of RDV E is set
as 100. Compared with the original RDM, which consists of 4, 900 unique elements,
RDV can significantly save computational resources. Since there are three different dis-
tance functions as described by Formula 6-8, RedRC has three variants, namely FedRC-
cos/cor/euc, and they will be evaluated and compared respectively.

FedRC 251

Fig. 3. Test accuracy vs. communication cost in (A) MNIST; (B) FMNIST; and (C) CIFAR-10.

Table 5. The experiment results of baselines and FedRC.

Method Maximum test accuracy Transmission time (in seconds)

MNIST FMNIST CIFAR-10 MNIST FMNIST CIFAR-10

FedAvg 91.48% 87.57% 52.35% 3623 1416 2148

FedProx 91.67% 87.34% 53.70% 3562 1615 2680

FedAsync 91.78% 87.60% 54.76% 534 458 545

PartialNet 91.87% 88.77% 54.97% 3247 979 1954

FedRC-cos 95.47% 88.84% 56.26% 475 270 325

FedRC-cor 95.56% 88.99% 57.67% 505 185 290

FedRC-euc 95.21% 88.89% 58.36% 395 195 330

1) Evaluation of Test Accuracy
First, as shown in Table 5, among the four baselines, PartialNet achieves the highest
test accuracy on all three datasets, i.e., 91.87% on MNIST, 88.77% on FMNIST, and
54.97% on CIFAR-10, which suggests the advantages of layer-wise FL algorithm.

Second, all the three FedRC variants can outperform the best baseline PartialNet
on the three datasets. Specifically, the best variant for each dataset, namely FedRC-cor,
FedRC-cor, and FedRC-euc, can improve accuracy by about 4.02%, 0.25%, and 6.17%
on MNIST, FMNIST, and CIFAR-10, respectively.

Third, the three FedRC variants have similar test accuracies on MNIST and
FMNIST, while the differences on CIFAR-10 are slightly large, which indicates that
complicated tasks are more sensitive to the distance function.

In summary, the saving on communication costs of FedRC will not deteriorate the
model performance, and surprisingly, an average improvement of 3.48% on the test
accuracy is observed. The results show that FedRC can filter the redundancy of local
models caused by data heterogeneity, and only uploads and aggregates more useful
local layers to form a better global model.

2) Evaluation of Communication Efficiency
First, as illustrated in Fig. 3, FedAsync needs much more communication resources for
model training compared with other baselines (i.e., FedAvg, FedProx, and PartialNet),
and the curve of FedAsync is much more vibrant, which suggests that general AFL
algorithms sacrifice communication efficiency and learning stability for stragglers.

252 S. Liu et al.

Fig. 4. The communication cost of FedRC compared with the baselines in the three datasets.

Second, when consuming the same communication cost, FedRC can not only
improve accuracy significantly compared with FedAsync, but also boost model per-
formance slightly compared with FedAvg, FedProx, and PartialNet.

Finally, as shown in Fig. 4, FedRC spends less communication cost to reach target
accuracy compared with the baselines, namely:

– For MNIST: FedRC-cos, FedRC-cor, and FedRC-euc only need 4.28, 4.14, and
3.14 GB to reach 90% accuracy respectively, and an average reduction of 32.63% is
observed compared with the best baseline PartialNet (5.72 GB);

– For FMNIST: The average consumption of the three FedRC variants is 1.62 GB,
while the best baseline PartialNet needs 1.97 GB to get an accuracy of 85%. Hence,
the reduction of cost is 17.77%;

– For CIFAR-10: Compared with the best performance of the four baselines (i.e.,
PartialNet 23.24 GB to reach 50%), the maximum, minimum, and average improve-
ments in communication efficiency of FedRC variants are 55.08%, 29.98%, and
42.37%, respectively.

In summary, since FedRC adopts the layer-wise uploading approach based on RC-
based uploading probability, the improvement of FedRC on communication efficiency
is significant, and an average cost reduction of 26.79% against the best baseline of the
three datasets is observed. Note that all three distance functions are favourable, and the
stability of FedRC is not affected by the reduction of uploaded parameters.

Fig. 5. Test accuracy vs. transmission time in (A) MNIST; (B) FMNIST; and (C) CIFAR-10.

FedRC 253

3) Evaluation of Time Efficiency
First, as summarized in Table 5, among the four baselines, FedAsync presents the short-
est transmission time (534/458/545 s) to reach the target accuracy on all three datasets
(MNIST/FMNIST/CIFAR-10), which indicates the high time efficiency of AFL algo-
rithms.

Second, all three FedRC variants can reach the target accuracy faster than
FedAsync. Specifically, 1) FedRC-cor performs the best on both FMNIST and CIFAR-
10, as it only needs 185 s and 290 s to reach the target accuracies of 85.00% and 50.00%
with a reduction of 59.61% and 46.79% compared with FedAsync, respectively; 2)
FedRC-euc is the fastest to reach the accuracy of 90% on MNIST, and a boost on the
learning speed of 26.03% against the best baseline is observed.

Finally, as illustrated in Fig. 5, the three FedRC variants share a similar time-
accuracy curve, which outperforms FedAsync as well as FedAvg, FedProx, and Par-
tialNet. Note that FedRC does not vibrate sharply compared with FedAsync, and can
gain accuracy improvement quickly compared with FedAvg, FedProx, and PartialNet.

In summary, FedRC inherits and enhances the advantages in time efficiency of AFL
methods, and in the meanwhile, can maintain a more stable learning curve.

4.3 Discussion

First, four main advantages of FedRC are observed from the results: 1) improving the
model accuracy; 2) saving communication costs; 3) shortening the transmission time;
4) maintaining a stable learning curve.

Second, as for the comparisons among different distance functions, we discover
the following three interesting observations: 1) all three distance functions are effective
as they share similar performance improvements and learning curves; 2) the compli-
cated dataset may be more sensitive to the distance function, as its accuracies under
different distances are more diverse; 3) the correction distance has higher compatibil-
ity for FedRC and can be the default method, as FedRC-cor outperforms FedRC-cos
and FedRC-euc slightly in most cases in terms of the test accuracy and transmission
time. Intuitively, all three distance functions can measure the similarity between two
representational vectors, and the correlation distance may be more suitable for complex
datasets, which generally require high-dimensional representations.

Finally, although the learning curve of FedRC is much more stable compared with
FedAsync, it still vibrates slightly compared with FedAvg and FedProx, which may be
due to the absence of utilizing temporal attributes to improve the aggregation process.

5 Conclusion

In this paper, we present FedRC, a layer-wise model uploading mechanism for asyn-
chronous federated learning. Based on the representational dissimilarity vector, rep-
resentational consistency is calculated as the layer uploading probability, since it can
capture the similarity of stimulus representation between the local layer and the corre-
sponding global layer.

254 S. Liu et al.

A comprehensive evaluation using three datasets (i.e., MNIST, FMNIST, and
CIFAR-10) demonstrates that FedRC outperforms four state-of-the-art baselines (i.e.,
FedAvg, FedProx, FedAsync, and PartialNet) by about 3.48%, 26.79%, and 44.14% in
terms of learning performance, communication efficiency, and transmission time effi-
ciency, respectively. The results prove that representational consistency can indeed be
utilized as the uploading probability to transmit more valuable layer parameters with
communication cost reduced and model accuracy improved.

However, a slight performance fluctuation during the learning is observed in FedRC
when compared to FedAvg and FedProx, and additional computation is required for the
calculation of RC, which indicate that FedRC can be further improved. In the future,
we will focus on the following directions: 1) the RDV will be further optimized to
enhance the representation level without increasing computational resources; 2) com-
plicated DNNs with more layers will be utilized in the experiments to further evaluate
FedRC and reveal the relationship between layer number and representational consis-
tency; and 3) layer-wise aggregation strategies will be designed to improve learning
stability.

References

1. Bonawitz, K., et al.: Towards federated learning at scale: system design. Proc. Mach. Learn.
Syst. 1, 374–388 (2019)

2. Chai, Z., Chen, Y., Anwar, A., Zhao, L., Cheng, Y., Rangwala, H.: Fedat: a high-performance
and communication-efficient federated learning system with asynchronous tiers. In: Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–16 (2021)

3. Chen, Y., Sun, X., Jin, Y.: Communication-efficient federated deep learning with layerwise
asynchronous model update and temporally weighted aggregation. IEEE Trans. Neural Netw.
Learn. Syst. 31(10), 4229–4238 (2020). https://doi.org/10.1109/TNNLS.2019.2953131

4. Chen, Y., Ning, Y., Slawski, M., Rangwala, H.: Asynchronous online federated learning for
edge devices with non-iid data. In: 2020 IEEE International Conference on Big Data (Big
Data), pp. 15–24. IEEE (2020)

5. Ek, S., Portet, F., Lalanda, P., Vega, G.: Evaluation and comparison of federated learning
algorithms for human activity recognition on smartphones. Pervasive Mob. Comput. 87,
101714 (2022). https://doi.org/10.1016/j.pmcj.2022.101714

6. Haddadpour, F., Kamani, M.M., Mokhtari, A., Mahdavi, M.: Federated learning with com-
pression: unified analysis and sharp guarantees. In: International Conference on Artificial
Intelligence and Statistics, pp. 2350–2358. PMLR (2021)

7. Herabad, M.G.: Communication-efficient semi-synchronous hierarchical federated learning
with balanced training in heterogeneous iot edge environments. Internet Things 21, 100642
(2023). https://doi.org/10.1016/j.iot.2022.100642

8. Horvath, S., Laskaridis, S., Almeida, M., Leontiadis, I., Venieris, S., Lane, N.: Fjord: fair and
accurate federated learning under heterogeneous targets with ordered dropout. Adv. Neural.
Inf. Process. Syst. 34, 12876–12889 (2021)

9. Hosseinalipour, S., Brinton, C.G., Aggarwal, V., Dai, H., Chiang, M.: From federated to fog
learning: distributed machine learning over heterogeneous wireless networks. IEEE Com-
mun. Mag. 58(12), 41–47 (2020). https://doi.org/10.1109/MCOM.001.2000410

10. Hu, C.H., Chen, Z., Larsson, E.G.: Scheduling and aggregation design for asynchronous
federated learning over wireless networks. IEEE J. Sel. Areas Commun. 41(4), 874–886
(2023). https://doi.org/10.1109/JSAC.2023.3242719

https://doi.org/10.1109/TNNLS.2019.2953131
https://doi.org/10.1016/j.pmcj.2022.101714
https://doi.org/10.1016/j.iot.2022.100642
https://doi.org/10.1109/MCOM.001.2000410
https://doi.org/10.1109/JSAC.2023.3242719

FedRC 255

11. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network representations
revisited. In: International Conference on Machine Learning, pp. 3519–3529. PMLR (2019)

12. Kriegeskorte, N., Mur, M., Bandettini, P.: Representational similarity analysis - connecting
the branches of systems neuroscience. Front. Syst. Neurosci. 2 (2008). https://doi.org/10.
3389/neuro.06.004.2008

13. Li, J., et al.: A federated learning based privacy-preserving smart healthcare system. IEEE
Trans. Ind. Inf. 18(3), 2021–2031 (2022). https://doi.org/10.1109/TII.2021.3098010

14. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization
in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

15. Liu, S., Chen, Q., You, L.: Fed2a: federated learning mechanism in asynchronous and adap-
tive modes. Electronics 11(9), 1393 (2022). https://doi.org/10.3390/electronics11091393

16. Liu, S., Qu, H., Chen, Q., Jian, W., Liu, R., You, L.: Afmeta: asynchronous federated
meta-learning with temporally weighted aggregation. In: 2022 IEEE Smartworld, Ubiquitous
Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy
Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/Dig-
italTwin/PriComp/Meta), pp. 641–648 (2022). https://doi.org/10.1109/SmartWorld-UIC-
ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00100

17. Liu, Y., et al.: Fedvision: an online visual object detection platform powered by federated
learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 13172–
13179 (2020)

18. Lu, X., Liao, Y., Lio, P., Hui, P.: Privacy-preserving asynchronous federated learning mecha-
nism for edge network computing. IEEE Access 8, 48970–48981 (2020). https://doi.org/10.
1109/ACCESS.2020.2978082

19. Ma, Q., Xu, Y., Xu, H., Jiang, Z., Huang, L., Huang, H.: FEDSA: a semi-asynchronous fed-
erated learning mechanism in heterogeneous edge computing. IEEE J. Sel. Areas Commun.
39(12), 3654–3672 (2021)

20. Manias, D.M., Shami, A.: Making a case for federated learning in the internet of vehicles
and intelligent transportation systems. IEEE Network 35(3), 88–94 (2021). https://doi.org/
10.1109/MNET.011.2000552

21. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient
learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics,
pp. 1273–1282. PMLR (2017)

22. Mehrer, J., Spoerer, C.J., Kriegeskorte, N., Kietzmann, T.C.: Individual differences among
deep neural network models. Nat. Commun. 11(1), 1–12 (2020). https://doi.org/10.1038/
s41467-020-19632-w

23. Palihawadana, C., Wiratunga, N., Wijekoon, A., Kalutarage, H.: Fedsim: similarity guided
model aggregation for federated learning. Neurocomputing 483, 432–445 (2022). https://doi.
org/10.1016/j.neucom.2021.08.141

24. Paragliola, G., Coronato, A.: Definition of a novel federated learning approach to reduce
communication costs. Expert Syst. Appl. 189, 116109 (2022). https://doi.org/10.1016/j.eswa.
2021.116109

25. Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: singular vector canonical
correlation analysis for deep learning dynamics and interpretability. In: 31st International
Conference on Neural Information Processing Systems, pp. 6078–6087 (2017)

26. Safaryan, M., Shulgin, E., Richtárik, P.: Uncertainty principle for communication compres-
sion in distributed and federated learning and the search for an optimal compressor. Inf.
Inference J. IMA 11(2), 557–580 (2022). https://doi.org/10.1093/imaiai/iaab006

27. Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: model-agnostic distributed
multitask optimization under privacy constraints. IEEE Trans. Neural Netw. Learn. Syst.
32(8), 3710–3722 (2021). https://doi.org/10.1109/TNNLS.2020.3015958

https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1109/TII.2021.3098010
https://doi.org/10.3390/electronics11091393
https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00100
https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00100
https://doi.org/10.1109/ACCESS.2020.2978082
https://doi.org/10.1109/ACCESS.2020.2978082
https://doi.org/10.1109/MNET.011.2000552
https://doi.org/10.1109/MNET.011.2000552
https://doi.org/10.1038/s41467-020-19632-w
https://doi.org/10.1038/s41467-020-19632-w
https://doi.org/10.1016/j.neucom.2021.08.141
https://doi.org/10.1016/j.neucom.2021.08.141
https://doi.org/10.1016/j.eswa.2021.116109
https://doi.org/10.1016/j.eswa.2021.116109
https://doi.org/10.1093/imaiai/iaab006
https://doi.org/10.1109/TNNLS.2020.3015958

256 S. Liu et al.

28. Sattler, F., Wiedemann, S., Müller, K.R., Samek, W.: Robust and communication-efficient
federated learning from non-i.i.d. data. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3400–
3413 (2020). https://doi.org/10.1109/TNNLS.2019.2944481

29. Sun, H., Ma, X., Hu, R.Q.: Adaptive federated learning with gradient compression in uplink
noma. IEEE Trans. Veh. Technol. 69(12), 16325–16329 (2020). https://doi.org/10.1109/
TVT.2020.3027306

30. Wang, X., Li, R., Wang, C., Li, X., Taleb, T., Leung, V.C.M.: Attention-weighted federated
deep reinforcement learning for device-to-device assisted heterogeneous collaborative edge
caching. IEEE J. Sel. Areas Commun. 39(1), 154–169 (2021). https://doi.org/10.1109/JSAC.
2020.3036946

31. Wang, Y., Wolfrath, J., Sreekumar, N., Kumar, D., Chandra, A.: Accelerated training via
device similarity in federated learning. In: Proceedings of the 4th International Workshop on
Edge Systems, Analytics and Networking, pp. 31–36 (2021)

32. Wu, C., Wu, F., Lyu, L., Huang, Y., Xie, X.: Communication-efficient federated learning via
knowledge distillation. Nat. Commun. 13(1), 1–8 (2022). https://doi.org/10.1038/s41467-
022-29763-x

33. Wu, W., He, L., Lin, W., Mao, R., Maple, C., Jarvis, S.: SAFA: a semi-asynchronous protocol
for fast federated learning with low overhead. IEEE Trans. Comput. 70(5), 655–668 (2021).
https://doi.org/10.1109/TC.2020.2994391

34. Xie, C., Koyejo, S., Gupta, I.: Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934 (2019)

35. Xu, J., Du, W., Jin, Y., He, W., Cheng, R.: Ternary compression for communication-efficient
federated learning. IEEE Trans. Neural Netw. Learn. Syst. 33(3), 1162–1176 (2022). https://
doi.org/10.1109/TNNLS.2020.3041185

36. You, L., He, J., Wang, W., Cai, M.: Autonomous transportation systems and services enabled
by the next-generation network. IEEE Netw. 36(3), 66–72 (2022). https://doi.org/10.1109/
MNET.006.2100542

37. You, L., Liu, S., Chang, Y., Yuen, C.: A triple-step asynchronous federated learning mech-
anism for client activation, interaction optimization, and aggregation enhancement. IEEE
Internet Things J. 9(23), 24199–24211 (2022). https://doi.org/10.1109/JIOT.2022.3188556

38. You, L., Liu, S., Zuo, B., Yuen, C., Niyato, D., Vincent Poor, H.: Federated and asynchro-
nized learning for autonomous and intelligent things. IEEE Netw. (2023). https://doi.org/10.
1109/MNET.2023.3321519

39. You, L., Tunçer, B., Zhu, R., Xing, H., Yuen, C.: A synergetic orchestration of objects,
data, and services to enable smart cities. IEEE Internet Things J. 6(6), 10496–10507 (2019).
https://doi.org/10.1109/JIOT.2019.2939496

40. Zhang, Y., Suleiman, B., Alibasa, M.J.: Fedgroup: a federated learning approach for anomaly
detection in iot environments. In: Longfei, S., Bodhi, P. (eds.) MobiQuitous 2022. LNCS, vol.
492, pp. 121–132. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-34776-
4 7

https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/TVT.2020.3027306
https://doi.org/10.1109/TVT.2020.3027306
https://doi.org/10.1109/JSAC.2020.3036946
https://doi.org/10.1109/JSAC.2020.3036946
https://doi.org/10.1038/s41467-022-29763-x
https://doi.org/10.1038/s41467-022-29763-x
https://doi.org/10.1109/TC.2020.2994391
http://arxiv.org/abs/1903.03934
https://doi.org/10.1109/TNNLS.2020.3041185
https://doi.org/10.1109/TNNLS.2020.3041185
https://doi.org/10.1109/MNET.006.2100542
https://doi.org/10.1109/MNET.006.2100542
https://doi.org/10.1109/JIOT.2022.3188556
https://doi.org/10.1109/MNET.2023.3321519
https://doi.org/10.1109/MNET.2023.3321519
https://doi.org/10.1109/JIOT.2019.2939496
https://doi.org/10.1007/978-3-031-34776-4_7
https://doi.org/10.1007/978-3-031-34776-4_7

	FedRC: Representational Consistency Guided Model Uploading Mechanism for Asynchronous Federated Learning
	1 Introduction
	2 Related Work
	2.1 Asynchronous Federated Learning
	2.2 Model Uploading Methods
	2.3 Similarity Analysis in FL

	3 Methodology
	3.1 Problem Formulation
	3.2 Details of FedRC
	3.3 Algorithm of FedRC

	4 Experiment and Discussion
	4.1 Experiment Setting
	4.2 Performance Evaluation
	4.3 Discussion

	5 Conclusion
	References

