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Abstract—As a novel learning paradigm, Federated learning
(FL) aims at protecting privacy by avoiding raw data shift-
ing between distributed clients and central servers. However,
recent researches demonstrate the vulnerability of FL against
gradient-based privacy attacks, in which, gradients intercepted
by malicious adversaries may result in data leakage. Current
defense methods suffer from performance drops, low privacy
guarantees, and high communication costs. Motivated by this, we
propose FedRSM, a Representational-Similarity-Based Secured
Model Uploading for Federated Learning. FedRSM splits Deep
Neural Networks (DNNs) into layers, calculates Representational
Dissimilarity Vector (RDV), measures the similarity between
local RDV and global RDV of each model layer, and constructs
secured local model to be uploaded based on Representational
Consistency Alteration (RCA). According to the evaluation result,
FedRSM can improve testing accuracy by up to 2%, significantly
reduce communication costs, and avoid data leakage under
different model complexities.

Index Terms—Federated Learning, Privacy Protection, Se-
cured Model Uploading

I. INTRODUCTION

In recent years, Deep Learning [1] has achieved significant
success in various domains, e.g., computer vision [2] and nat-
ural language processing [3]. To train Deep Neural Networks
(DNNs) with high performance, conventional methods rely on
centralized servers to control the whole learning process from
data collection to model training. However, in the ubiquitous
Internet of Things (IoT) systems and services, massive data
generated by distributed smart devices trigger serious privacy
protection problems and require high network throughput.
Aiming at providing a privacy-preserving and cost-efficient
training procedure, Federated Learning (FL) [4] is developed.

Instead of sharing the raw data of clients with the server,
FL allows clients to train models locally and transmit only
gradients or model parameters to the global server. Never-
theless, recent research on gradient-based privacy attacks has
demonstrated the vulnerability of FL [5]. By intercepting gra-
dients uploaded by clients, malicious adversaries are capable
of recovering raw data. With the rapid development of attack
algorithms [6]-[9], the privacy-preserving capability of FL
awaits to be strengthened. To limit the risk of data leakage
during the learning process, current research, which mainly
focuses on securing information transmitted to the server, can
be categorized into three groups, namely: 1) Homomorphic
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Encryption (HE) that encrypts information sent to the sever
[10], 2) Differential Privacy (DP) that adds Gaussian or
Laplace noises to the raw data [11], and 3) Data Masking
that masks part of the data to the global server.

Due to the additional operations or information added to be
processed, existing methods suffer from serious performance
deterioration in either learning speed or cost. To be specific, to
support the gradually growing IoT systems and services, FL
faces several key challenges to ensure the privacy of clients
without leaking raw data to malicious adversaries, and in the
meanwhile, to train a high-performance global model in an
acceptable period of time. Therefore, a holistic method that
is of high security to inherit the benefits of FL awaits to be
discovered.

Motivated by this, we propose FedRSM, a Representational-
Similarity-Based Secured Model Uploading for Federated
Learning. In general, firstly, to guarantee user privacy and
reduce communication costs, FedRSM splits DNNs into layers
and chooses to hide some of them (without uploading them to
the server) based on their individual contributions. Secondly,
to measure the importance of each layer, based on Rep-
resentational Similarity Analysis (RSA) [12]-[14], FedRSM
calculates Representational Dissimilarity Vector (RDV) using
stimulus data pairs. By further computing Representational
Consistency (RC) and Representational Consistency Alteration
(RCA), the value of each layer can be compared and thus
construct a secured model locally. Finally, while the secured
local models are uploaded, the global server adopts a layer-
wise aggregation mechanism to update the global model.
Accordingly, the main contributions of this paper can be
summarized as follows:

e FedRSM is proposed by introducing Representational
Consistency Alteration (RCA), which is less computa-
tion complexity than the calculation of representational
dissimilarity matrix, to avoid data leakage attacks by
masking layers according to their values of RCA.

o FedRSM implements a weighted and layer-wise model
aggregation function to process secured local models
uploaded from clients, through which, the heterogeneity
among secured local models can be remedied and the
global model can be updated more accurately.

o FedRSM is compared with four state-of-the-art baselines
(i.e., FedAVG, DP with different noise levels, FedSplit,
and FedCGQG) to train three kinds of DNNs (i.e., LeNet,

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on June 02,2024 at 02:02:07 UTC from IEEE Xplore. Restrictions apply.



ConvNet, and ResNet18) based on two standard datasets
(i.e., German Traffic Sign and CIFAR-10). The eval-
uation results show that FedRSM can achieve a joint
improvement in both training performance and security
protection.

The rest of this paper is organized as follows. First, Section
II summarizes research related to data leakage attacks, privacy-
preserving methods, and the utilization of RSA in FL. Second,
Section IIT and Section IV introduce and evaluate the proposed
FedRSM, respectively. Finally, Section V concludes this paper
and discusses future works.

II. RELATED WORK

This section summarizes key related works. First, the state-
of-the-art data leakage attack algorithms are introduced as the
motivation of this paper. Second, current defense methods are
summarized. Third, the utilization of RSA in FL is reviewed.

A. Data Leakage Attack

Many researchers try to recover raw data from gradients.
A classic algorithm, named Deep Leakage from Gradients
(DLG), [5] first proves the probability of leakage. Furthermore,
an improved DLG (iDLG) is proposed to enhance the label
inference accuracy [6]. To recover large-size images (i.e., up to
224x224), Inverting Gradients (IG) algorithm [7] decomposes
single parameter gradient into corresponding norm magnitude
and direction. In [8], Generative Regression Neural Network
(GRNN) is introduced by formulating data recovery into a
regression problem. Finally, aiming at the recovery of batch
data, catastrophic data leakage in vertical federated learning
(CAFE) [9] is proposed to recover data with batch size over
100 in vertical FL.

B. Security-enhancing Method

While attack algorithms demonstrate the vulnerability of
FL, many efforts have been done to strengthen the security
required in FL. Without losing generability, these methods can
be categorized into three groups:

+ Homomorphic Encryption (HE): Cryptography is used
to secure the data and support the training of DNNs
[15]. Moreover, BatchCrypt is proposed to speed up
encryption-related operations [16], and multi-key HE is
introduced into FL to lift the security level [17]. How-
ever, HE still suffers from additional computation and
communication costs.

« Differential Privacy: DP is combined with FL by adding
noises into parameters uploaded by clients [18], e.g.,
Bayesian DP is employed to secure the parameters trans-
mitted through the network [19]. Moreover, by consider-
ing the data heterogeneity of IoT systems and services,
[20] provides a solution to train personalized models.
Nevertheless, DP can not avoid data leakage and may
also impact the model performance.

« Data Masking: It avoids data leakage by masking part
of the transmitted data, e.g., sharing only half of the local

model parameters to the server [21]. Moreover, the condi-
tional Generative Adversarial Network (GAN) is applied
in FL by decomposing DNNs into a public classifier
and a private extractor, and only sharing the classifier
and generator [22]. Although masking part of the data
can help increase security, how to avoid performance
reduction due to the absence of data while maintaining
cost-efficient learning remains an open problem.

C. Representational Similarity Analysis in FL

As a useful tool to compare differences among neurons,
RSA [12] is introduced into deep learning [13] to analyze
layer-wise similarity (i.e., RC) of DNNs. Moreover, RC is also
used to enhance model aggregation of FL for a performance
boost [14]. However, RSA has not been used to address the
privacy concerns of FL as it can be an important indicator to
mask unessential information and in turn, save communication
costs and improve communication security occurred between
the clients and the server.

III. METHODOLOGY

As shown in Fig. 1, FedRSM proposed by this work is
divided into three phases that execute iteratively, namely:
o P1: Local Training Phase: Clients train local models
using corresponding private data.
o P2: RSA Phase: Clients conduct RSA, and then form
secured local models by masking layers.
o P3: Global Aggregation Phase: The server updates the
global model through layer-wise aggregation.
The rest of this section will introduce the three phases of
FedRSM, repsectively.

A. local Training Phase in FedRSM

In this work, we consider an FL system with one central
server receiving local models updated by clients, control-
ling the global model aggregation and distribution process,
and K clients which hold private datasets {D1, Ds, ..., D }.
Specifically, each private dataset is divided into a training
set DIT*™ and a testing set D{°**. Moreover, each client k
preserves a classification network wy, consisting of L layers,
ie., wy = {w},wi, ..., wk} where w' i € [1, L] denotes the
parameters of i'" layer.

Assume that once a client k£ joins the system, first, it
retrieves the latest global model w? corresponding to t** global
round from the server, then, sets w? as its current local model
wi, and finally, conducts local training based on its local
training set Di"*" according to Formula 1,

wi, = wj, — aV 1 Fi(wj,, D) (1)

where « refers to learning rate, and Fj,(w’, D{"™) is the loss
calculated based on DI"*™ of client k.

Since the full model uploading may lead to data leakage,
FedRSM proposed by this paper aims at strengthening security
by uploading local models with layers masked while main-
taining high model performance. Therefore, how to avoid the
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performance dropping caused by masked and heterogeneous
models uploaded by the clients is essential. To tackle this
issue, FedRSM introduces a cost-efficient mechanism, called
Representational Similarity Analysis (RSA), to calculate the
importance of each model layer, and accordingly form secured
local models (with related layers masked) to be uploaded.

B. Representational Similarity Analysis in FedRSM

The RSA phase of FedRSM is implemented to construct
a secured local model as illustrated in Fig. 2. After local
training is completed, each client executes RSA to measure
the importance of each model layer. Specifically, given a DNN
layer, stimulus data pairs selected from the server-prepared
stimulus datasets are processed by the updated local model and
the received global model, respectively. After that, the distance
between each data pair is calculated according to Formula 2,

N

Y (ol(dim) —

dim=1

d'fi, j) = ol(dim))? )

where d'[i, j], corresponding to the I*" layer, is the distance
between stimulus data i and j, and ol(-) is the output vector
including N dimensions given stimulus data ¢. It is worth not-
ing that different from calculating a Representational Dissim-
ilarity Matrix (RDM) in traditional RSA, FedRSM selects E
elements from RDM to form a Representational Dissimilarity
Vector (RDV) to reduce the computational complexity.

With the calculation of local and global RDVs, the Repre-
sentational Consistency (RC) can be defined as Formula 3,

RC' = [p(RDVy,, RDV;j,))? )
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where RC! refers to the RC value of [** layer, which is
measured based on the Pearson Correlation Coefficient p of
two RDVs.

To quantify the importance of each DNN layer, a layer-wise
RC Alteration (RCA) is designed according to Formula 4,

RCL,, — RC|

RC'AH_1 | RO
t

| “)
where RCA!_, is the RCA value of ["* layer in (¢+ 1)"
global training round.

Based on RCA, clients can choose to upload layers with
higher RCA according to their communication budget (i.e.,
bandwidth), which together form the secured local model.

C. Gobal Aggregation Phase in FedRSM

Once local training is completed, client £ uploads the
secured local model w}, to the server and awaits for the updated
global model. As for the server, it distributes the global model
to every client at the beginning of each round, receives local
models continuously, and starts the global aggregation when
all the local models are received.

After the secured models are received, the server can
update the global model based on according to Formula 5
and 6. In general, a layer-wise model aggregation process is
implemented to remedy the impact of secured local models,
as they may have some layers absent.

K
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(6)

L
_ I 1
WE = sign * W,
=1

where |Dy| is the dataset size of client k, wy, refers to the
secured local model uploaded by the corresponding client, and
w!, which refers to the I*" layer of local model, is guided by
lsign € {0,1} in model uploading (i.e., 1 for uploading).

D. Algorithm of FedRSM

As illustrated in Algorithm 1, FedRSM runs at both sides
of the client and server.

o Client Side (Lines 1-11): For each client in FedRSM, it
first receives global model w? from the server and sets it
as wz (ak.a., local model), then conducts local training
process and updates w}. Next, it stimulates each model
layer [ with stimulus data pairs and calculates RC'A'.
Finally, it forms and uploads a secured local model w},
to the server.

Server Side (Lines 12-16): The server of FedRSM keeps
receiving local models, and starts the global aggrega-
tion procedure once all clients have their local models
uploaded. After the update of the global model w*!,
it is distributed to every client to start another round
of learning. Accordingly, the global training round ¢
increases to ¢ + 1, and the whole system steps into the
next round. Note that the learning ends when a stop
condition is met (i.e., maximum learning iterations, the
target accuracy, etc.).

In summary, FedRSM ensures the security of the local

data of clients by using RSA, which can construct a secured
local model with masked layers, and also remain high model

performance by implementing a layer-wise aggregation. The
merit of FedRSM is evaluated in the following section.

Algorithm 1 FedRSM Algorithm

Client Side:
1: for £ < K in parallel do
2: Receiving global model w’ from server as wj,
Training local model using D{e"
for layer [ € L do
Stimulating both w* and w?,
Calculating RC' according to Formula 3
Calculating RC A" according to Formula 4
end for ~
Forming secured local model w! by Formula 6
10 Uploading secrued local model w,
11: end for
Server Side:
12: Receiving local models continuously
13: when k£ = K do

R e A A

14: Constructing global model w!*! by Formula 5
15: Distributing global model w!*! to clients
16: Increasing ¢t to ¢t + 1

IV. EVALUATION

In this section, the model performance of FedRSM as well
as its security-protecting ability will be evaluated.

A. Experiment Settings

192

To reveal the capability of the proposed mechanism, i.e.,
the ability to improve learning performance and data security,
FedRSM is compared with four state-of-the-art baselines in
training three kinds of DNNs on two standard datasets.
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TABLE I
SUMMARY OF MODELS TO BE TRAINED
Term LeNet | ConvNet | ResNetl8

Learning rate 0.001 0.001 0.001

Batch size 20 20 20

Number of convolution layers 3 9 17

Number of fully connected layers 1 1 1
Model size (KB)* 166 3625 43828

*The size of complete model.

1) Models: Three network models are used in the experi-
ment, namely:

o LeNet [5]: A variant of classic network LeNet-5.

e ConvNet [7]: A network containing 9 convolutional
layers to support the classification task.

o ResNetl8 [23]: A variant of a residual training frame-
work to ease the training burden of DNNss.

Note that the configurations, structure, and hyperparameters
of each model are listed in Table I.

2) Datasets: Two datasets are chosen for performance

evaluation, namely:

¢ German Traffic Sign (GTS) [24]: A benchmark for
traffic sign detection containing different types of traffic
signs from Germany. The dataset involves 34,799 training
pictures and 12,630 testing pictures divided into 43
categories. Each picture is a 32x32x3 color image.

o CIFAR-10 [25]: A dataset with reliable labels comprising
10 classes of non-overlapping images (e.g., automobile,
truck, and bird). It consists of 50,000 training images and
10,000 testing images with the size of 32x32x3.

3) Baselines: We compare the performance of FedRSM

with 4 baselines, mostly with security-protecting abilities:

o FedAVG [4]: It is a classic FLL method where clients
upload full models and the server aggregates them for
the global model based on the average function. It is the
one vulnerable to the attacks.

« Differential Privacy [11]: It is a widely used method in
cryptography. We implement DP by adjusting different
levels (02 = 0.001 and 02 = 0.1) of Gaussian noises
and adding the noises to the uploaded local models.

o FedSplit [21]: It is an FL method that shares only partial
local models with the server to avoid attacks causing data
leakage. We split each network model into half and only
transmit the latter parts to the server.

o FedCG [22]: It is an FL algorithm that creates the model
with a private extractor and a public classifier, uses GAN
to mimic the output of the extractor, and shares the
parameters of the generator and classifier with the server.

4) Evaluation Metrics: Two kinds of evaluation metrics are

utilized, namely:

o Performance Evaluation: An FL system with 10 clients
and 1 server is created to train 6 DNNSs (i.e., three models
times two datasets) per method. Specifically, each client
is assigned with the same amount of training and testing

images (i.e., 1,000 for GTS and 500 for CIFAR-10) with
batch size 20 and a learning rate of 0.001. Note that for
FedRSM, we choose not to upload the layer with the
highest RCA value, and two images from each category
are prepared as stimuli with RDV dimension E of 50.
The performance of FedRSM is evaluated by three met-
rics, i.e., 1) Top-1 test accuracy according to Formula
7, where TP, TN, FP, and FN refer to true positives,
true negatives, false positives, and false negatives, re-
spectively; 2) the total communication cost measured by
Formula 8, where nfc refers to the size of local model
uploaded by client % in the ¢! communication round and
T represents the number of global training round; and 3)
the accumulated training time according to Formula 9,
where Time!, ;. refers to the training time of the ¢
communication round.

TP+TN

Ace = 7
“TTPYTN+FP+FN @
T K Tlt
_ "k
Cost =3 > ( 1024 1024 ®)
t=1 k=1
T
Timet’rain - Z Timeirain (9)
t=1

o Privacy Evaluation: The worst case with the most data
leakage probability is considered in the experiment. To
be specific, assume that the server is malicious and tries
to recover the original images of clients from variation
w® — w} by using IG algorithm [7]. Moreover, clients
only process single data with batch size 1. Attacks against
each image repeat three times, each of which lasts 24,000
rounds, and the recovered image with the highest Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM) will be presented as the final result.

B. Performance Evaluation

The performance of the compared methods is compared
and discussed according to the three performance metrics,
namely: Top-1 test accuracy, total communication cost, and
total training time. The results are shown in Table II.

1) Top-1 test accuracy: First, as illustrated in Fig. 3, com-
pared to other models, ConvNet achieves the highest accuracy
on both datasets. Second, FedRSM outperforms baselines on
3 out of 6 trained DNNs, i.e., achieving an improvement
of 2% on GTS under LeNet, CIFAR-10 under LeNet, and
CIFAR-10 under ConvNet, respectively. Moreover, FedRSM
maintains the same performance with FedAVG and DP(c? =
0.001) on GTS under ConvNet and ResNetl18. It shows the
competitive performance of the proposed method in handling
the heterogeneous information preserved by different clients.
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TABLE 11
THE COMPARISON™ OF FEDRSM AND BASELINES ILLUSTRATING 1) TOP-1 TEST ACCURACY, 2) COMMUNICATION COSTS, AND 3) TRAINING TIME.

German LeNet ConvNet ResNet18
Traffic Sign Acc Cost(GB) | Training Time(s) Acc Cost(GB) | Training Time(s) Acc Cost(GB) | Training Time(s)
FedRSM 0.83+0.01 0.44 2147.98 0.9840.01 9.27 5163.02 0.934+0.01 94.44 11793.93
FedAVG 0.8140.02 2097.75 0.9840.01 4884.34 0.9340.01 10368.47
DP(0.1) 0.6640.04 0.47 2102.56 0.90+0.02 10.37 4903.42 0.84+0.02 125.39 10456.70
DP(0.001) 0.8140.01 2112.49 0.9840.01 4894.11 0.9340.01 10433.33
FedSplit 0.7540.03 0.42 2093.10 0.9540.02 8.44 4876.81 0.6440.11 117.85 10399.74
FedCG 0.7640.03 9.25 37023.33 0.6740.04 20.57 54441.55 0.6140.05 126.23 53627.87
CIFAR-10 LeNet ConvNet ResNet18
Acc Cost(GB) | Training Time(s) Acc Cost(GB) | Training Time(s) Acc Cost(GB) | Training Time(s)
FedRSM 0.49+0.03 0.44 1032.77 0.7240.04 9.29 2910.15 0.5240.03 93.52 5537.04
FedAVG 0.46+0.03 996.37 0.7040.03 2873.77 0.5340.05 5236.11
DP(0.1) 0.2840.03 0.47 1002.72 0.4640.02 10.37 2886.01 0.49+0.03 125.39 5238.64
DP(0.001) 0.4740.05 999.54 0.7040.03 2880.27 0.5140.04 5232.10
FedSplit 0.41£0.06 0.42 1002.66 0.5140.03 8.44 2872.01 0.3540.03 117.85 5229.05
FedCG 0.4640.03 9.25 38822.95 0.4040.08 20.57 42228.23 0.3540.04 126.23 45184.65

*Results in bold refer to the best performance while underlined results refer to the second best performance.
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Fig. 3. Top-1 test accuracy on German Traffic Sign and CIFAR-10 under different model architectures.

2) Communication Cost: In general, FedAVG and DP
require the same communication cost as they upload full
models during the training. Since FedCG requires uploading
the parameters of generators and classifiers, it consumes more
communication resources. On the contrary, FedSplit and Fe-
dRSM can lessen the communication cost, since both of them
only need to upload partial models. To be specific, FedSplit
achieves the lowest cost to train LeNet (0.42 GB) and Con-
vNet (8.44 GB), whereas FedRSM maintains the second best.
Moreover, FedRSM overcomes FedSplit in training ResNet18
with a cost of 94.44 GB. It implies that with the growth of
model complexity, due to the randomness of RSA, FedRSM
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can be more cost-efficient than FedSplit, as FedRSM can
upload different types of model layers adaptively according to
their RSA values, and instead, FedSplit needs to consistently
upload fully connected layers, which, in general, contain a
large number of parameters.

3) Training Time: : First, in the case of using GTS to
train the three models, more training time is required than
CIFAR-10, as GTS contains more images. Second, FedAVG,
DP, and FedSplit share almost the same training time. Third,
since FedRSM adds additional operations to calculate RSA,
the training time grows with the increase in model complexity,
i.e., about 2.7%, 3.4%, and 9.5% for LeNet, ConvNet, and
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Fig. 5. The loss of attack algorithm (Inverting Gradients) under LeNet and ConvNet.

ResNet18, respectively. However, while comparing FedRSM
with FedCG, the training time reduces by about 10x. It indi-
cates that the training of GAN is time-consuming compared
to other methods.

The above results show that even though the calculation of
RSA can increase the training time slightly compared to the
best baseline, the application of RSA in FedRSM, can, indeed,
improve learning performance in terms of model accuracy and
communication cost.

C. Privacy Evaluation

The comparison between the ground truth images and the
recovered images is shown in Fig. 4. The first three rows are
from GRS while the rests are from CIFAR-10. The results
of LeNet show that FedAVG suffers from the severest data
leakage with the highest PSNR and SSIM, followed by DP
(62 = 0.001). With the increase in the noise level, the security
protection ability of DP can increase significantly. Finally,
FedSplit, FedCG, and FedRSM are able to avoid data leakage,
as their values of PSNR and SSIM are the lowest.

To further reveal the ability of these methods in protecting
data security, the recovery loss of the IG algorithm (lower loss
value refers to higher recovery quality) is presented in Fig. 5.

Under both models, the loss of FedSplit, FedCG, and FedRSM
almost remain unchanged during the attack. It is reasonable
as models uploaded by these methods are incomplete and
therefore, result in the malfunction of the attack algorithm.
However, for FedAVG and DP, the algorithm is still functional
and can recover images, which is more obvious under ConvNet
where the loss of both methods fluctuates with the increase of
iterations. To be specific, FedAVG leads to a deep leakage of
raw data. In terms of DP, the quality of recovered images is
related to model complexity and noise level.

D. Summary

While considering the results in performance and security
metrics jointly, the proposed FedRSM achieves a more bal-
anced capability in security protection. Specifically, compared
to baselines, by maintaining a similar training time, FedRSM
can improve test accuracy for up to 2% and significantly
reduce communication costs. In the meanwhile, FedRSM
is capable of avoiding data leakage under different model
complexity.
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V. CONCLUSION

In this paper, we propose FedRSM, a representational-
similarity-based secured model uploading for federated learn-
ing. Based on representational similarity analysis, for each
FedRSM client, it calculates layer-wise representational con-
sistency alterations and constructs the secured local model by
masking layers. For the FedRSM server, since the secured
local model is incomplete (with some layers absent), it imple-
ments a layer-wise model aggregation function to update the
global model.

Moreover, by using two standard datasets (i.e., German
Traffic Sign and CIFAR-10) to train three DNNs (i.e., LeNet,
ConvNet, and ResNet18), the evaluation results demonstrate
that with a slight increase in training time (due to the additional
calculation of RSA), FedRSM can improve model accuracy for
up to 2%, significantly reduce communication cost, and avoid
data leakage under different model complexity.

In the future, FedRSM will be enhanced in three aspects,
namely: 1) exploring an adaptive algorithm to choose the num-
ber of masked layers for optimal performance, 2) simplifying
the calculation of RSA or finding an alternative of RSA with
less computation complexity to improve training efficiency,
and 3) enabling more attacking scenarios to be supported by
FedRSM, and in turn, increase its generability in security
protection.
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