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Abstract—Driven by artificial intelligence and edge 

computing, federated learning methods have become increasingly 

advanced and applied in various fields. Specifically, federated 

learning has been applied in various scenarios in intelligent 

transportation system (ITS) in which there are privacy issues. 

Travel time prediction is an important research problem in ITS. 

In this study, we apply wide-deep-recurrent models in a federated 

learning framework to predict estimated time of arrival (ETA) of 

vehicles, which could potentially improve the drivers and 

passengers’ experience in travel service. We also apply periodic 

layers updating and representational consistent enhancing 

strategies in synchronous and asynchronous federated learning 

to improve the model efficiency. In addition, we propose a 

synchronous learning rate decay method to enhance the 

efficiency of federated learning. We integrate federated learning 

frameworks with wide-deep-recurrent learning and use a ride-

sharing order records data with multi-dimensional information to 

predict travel time in a decentralized way to protect personal data 

privacy. Comparing with the selected baselines, FedAvgPR and 

FedAsyncPR models can reduce communication cost by about 

14.22% and 44.41% to reach a target level of accuracy measured 

by mean absolute percentage error (MAPE). Moreover, 

synchronous learning-rate decay method not only can reduce the 

communication cost, but also improve the optimal prediction 

accuracy by about 1.80% in synchronous federated learning 

models. Overall, the optimal accuracies of the proposed models 

range from 8.42% to 10. 21%. The proposed federated learning 

models could be helpful for improving drivers travel experience 

while tackling the potential data privacy concerns. 

Keywords—estimated time of arrival, travel service, federated 

learning, learning rate decay method. 

I. INTRODUCTION 

With the booming development of artificial intelligence, 
edge computing,  and other advanced technologies, Internet 
of Things (IoT) devices, mobile devices, robotic vehicles and 
roadside sensors have become widely ubiquitous and grown 
rapidly in numbers. These devices generate massive and 
valuable data during their daily communication, which are 
commonly gathered at a data center. This configuration, 
however, raises great challenge to the effective use of the 
distributed data and data privacy issues. In this context, 
federated learning  has been proposed to provide secure 
modeling pipelines with little to no data sharing that leads to 
a highly efficient privacy-preserving solution [1]. At the 
same time, intelligent transportation system (ITS) has placed 
more  emphasis on the system operations instead of only 
focusing on infrastructure development [2]. And the analysis 
and application of large-scale and real-time traffic data is 
playing a vital role in ITS.  

Estimated time of arrival (ETA) refers to the expected 
travel time between a pair of origin and destination along a 
given route, and its prediction is an important research topic 

in ITS. The accurate and fast travel time prediction can 
improve the operation performance of advanced traffic 
management system and the travel experience of travelers. 
Many machine learning methods have been applied for 
accurate prediction of ETA in various transportation domains. 
For instance, reference [3] introduced a system which 
learned from historical trajectories and used the 3D grid 
points to collect key feature to estimate flights travel time 
through regression models and recurrent neural network 
(RNN). A plug and play deep learning based generative 
model was utilized to update the ETA information of the 
buses on the go [4]. Taking advantage of heterogeneous 
information graph, reference [5] translated the road map into 
a multi-relational network and introduced a trajectory based 
network to jointly consider the travel behavior pattern for the 
ETA prediction of vehicles. To address the data sparsity 
problem, the road network metric learning framework 
consisted of a main regression task to predict the travel time 
and an auxiliary metric learning task to improve the quality 
of link embedding vectors was proposed [6]. Reference [7] 
presented a tree-structured Long Short-Term Memory 
(LSTM) model with attention mechanism to predict vehicles’ 
travel time. Besides, the proposed model substitutes a tree 
structure with attention mechanism for the unfold way of 
standard Long Short-Term Memory to construct the depth of 
LSTM and modeling long-term dependence. The studies 
mentioned above are all training their models in a centralized 
manner so that all data need to be gathered in data center. As 
such, the risk and damage of data leakage are high and the 
performance of the model is limited by the level of 
concentration of data. To tackle the issue of data availability 
and security, a decentralized training mode, federated 
learning (FL), has received increasing popularity and has 
been widely applied to various task in ITS. An original FL 
framework, FASTGNN, was proposed for preserving 
transportation networks’ topological information while 
protecting the data privacy, and it was applied to forecast 
vehicles’ speed [8]. Reference [9] put forward an FL based 
gated recurrent unit neural network algorithm with a trade-
off between accurate traffic flow prediction and preserving 
data privacy. 

Up to now and to the best of our knowledge, there is no 
research on predicting the estimated time of arrival (ETA) of 
vehicle trips in the mobility service context based on 
federated learning. However, the drivers’ driving information 
is dispersed and highly private. The centralized learning 
approach may be hindered by data security and data privacy 
problems. On the contrary, federated learning, a 
decentralized machine learning framework, is suitable to 
leverage the driving information without compromising 
privacy. In this paper, we will apply a novel wide-deep-
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recurrent (WDR) [10] learning model within a federated 
learning architecture to estimate travel time and propose a 
synchronous learning rate decay method to improve model 
efficiency and accuracy in synchronous and asynchronous 
federated learning models. 

II. METHODOLOGY 

A. Wide-Deep-Recurrent Learning 

The central task in this study is to predict the travel time 
and, in turn, the time of arrival based on available 
information provided from trip records. Similar to many 
other cases, various different types of information could be 
extracted from individual-level trip records, including spatial 
information, temporal information, traffic information, 
personalized information and augmented information. For 
instance, spatial information includes traffic light, 
intersection and road segment records. Departure time, as 
temporal information, indicates when the trip started. Traffic 
information usually contains the traffic condition through the 
congestion classification. Personalized information depicts a 
specific driver who may have different driving preference. 
Other auxiliary information such as weather may also be 
provided. These features are in different shapes and sizes and 
can be respectively divided into dense features, sparse 
features and sequential features accordingly. 

Because of the wide variety of features, a WDR learning 
model structure is well-suited for the prediction tasks. A  
WDR model contains wide, deep and recurrent models and is 
selected as the base model for the prediction of ETA. The 
model structure is as shown in Fig. 1. This model combines 
the advantages of its sub-models and can effectively utilize 
the dense features, the sparse features with high dimensions 
and the sequential features along the road segments. The 
WDR model in this study is adopted from [10] and consists 
of three main blocks:  

• Wide model includes cross-product transformations 
followed by affine transformations with ReLU 
activations to produce a 256-dimensional effect. 

• Deep model embeds sparse features into 16 
dimensions and sets up a 3-hidden-layer MLP with 
ReLU activation to process them into a 256-
dimensional output. 

• The recurrent model is a 2-layer Long Short-Term 
Memory (LSTM) neural network. Firstly, each road 
segment is projected into a 256-dimensional space 
with a fully connected layer. Then, its transformed 
sequential characteristics are fed into LSTM with 256 
units. Lastly, LSTM produces a final hidden state 
with 256 dimensions as its output. 

Finally, the models mentioned above will be 
concatenated to estimate travel time through a fully 
connected layer. 

In WDR, measuring accuracy of the model is through 
mean absolute percentage error (MAPE) loss which is the 
benchmark of back-propagation model parameters. And the 
target is to minimize the MAPE as formula (1): 

���� � |��	�(��)|
��



���

                              (1) 

where ��  is actual travel time of the route x� , �(x�) is the 

ETA of the route x�, and � is the overall regression model. 

B. Federated Learning Framework for WDR 

In this section, we introduce the several proposed 
federated learning frameworks designed for WDR model. In 
essence, the federated learning framework consists of local 
clients that generate and maintain the data, a training model 
for the central learning task that is shared across clients, and 
a cloud server in charge of organizing the modeling process. 
Local clients, the training model and the global cloud server 
are participant drivers, the WDR model and the global 
federated aggregating algorithms in this study, respectively. 
Several federated learning frameworks are described as 
below:

Fig. 1. The wide-deep-recurrent learning framework.
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• FedAvg [11] is a widely adopted synchronous 
federated learning framework. It randomly selects a 
portion of clients which participate in a global round 

�  to upload and aggregate local models weights 
through weighted average method. And it is one of 
baselines in our experiments. 

• FedAsync [12] is a classic asynchronous federated 

learning framework. It incorporates a proximal term � 
that helps to amend the loss resulting from the 

hysteretic clients. And a mixed hyper-parameter � is 
used for balancing the current model weights and 
global model weights when the cloud server is 

updating the global model. In this paper, � is set to 

0.5 [12] and �  is set to 0 as generated by the 
differences between local and global model weights. 
This is the other one of baselines of our experiments. 

• FedAvgPR is a novel federated learning framework. 
It combines FedAvg with periodic layers uploading 
(PLU) strategy and representational consistency 
enhancing (RCE) strategy [13] [14]. In PLU, every 
global round is a training period, and the layers of 
deep neural networks will only be uploaded in 
specific global rounds. So, it can decrease the cost of 
communication. RCE, on the other hand, measures 
each layer of deep neural networks of local model’s 
importance in a global round to determinate whether 
the received layer should be uploaded or not. Note 
that RCE is computed by the Pearson correlation 
coefficient [15] of local model layers’ weights and 
global model layers’ weights. 

• FedAsyncPR is also a novel federated learning 
framework, in which the PLU and RCE strategies are 
incorporated with the FedAsync framework. 

As illustrated in Fig. 2, the selected clients-set k, 
according to the rule-of-thumb [16], generates local data, and 
we select m clients as the training and integrated testing 
dataset.  

As shown in Fig.2.(a), the global server firstly selects m 
clients from k clients randomly as the participants at a global 
round, according to the synchronous federated learning 
scheme. Then, the model in every selected client is trained 
locally and local model weights are uploaded. After that, the 
cloud server will aggregate k clients’ weighted averaging 
local model weights. Lastly, the cloud server will send 
updated global model to local clients for the next round’s 
training. Specifically, FedAvgPR model uploads and 
aggregates weighted averaging local model layers weights 
with bigger RCE value. 

As shown in Fig.2.(b), on the other hand, the 
asynchronous federated learning framework selects m clients 
from k clients, ordered by time as the participants in a global 
training round. Every selected client trains its model and 
upload its model weights. The cloud server then aggregates 
composite local and global model weights according to a 
predefined rule from k clients. Lastly, the cloud server 
dispatches the updated global model to participant local 
clients in this global round. Specifically, FedAsyncPR model 
uploads and aggregates composite global and local model 
layers weights according to a predefined rule with bigger 
RCE value. 

Through the above-mentioned decentralized learning 
process, the global model converges to the optimal condition 
without accessing the complete dataset. At the final stage, we 
can use combined testing dataset to measure the accuracy of 
the global federated learning model from each round. 

 

 

Fig. 2. (a) The synchronous federated learning framework for WDR; (b) The asynchronous federated learning framework for WDR.
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C. Learning Rate Decay Methods for Federated Learning 

This study also proposes a learning rate decay approach 
for federated learning. Gradient descent families and 
adaptive optimization algorithms are the mainstream 
optimizers in machine learning. Among them, Adam [17] is 
one of the most popular adaptive optimizers and is selected 
as the learning rate decay baseline in this paper. Adam’s 
adaptive learning rate decay is calculated as formula (2): 

��� = �
���̂!"

�#
^

                            (2) 

where  ���  denotes the learning rate after decaying, � 

denotes initial learning rate, $  represents a small enough 

constant to guarantee a non-zero denominator, and �#
^

 and 

%#
^

 are the amended first and second moment estimation. 
During the experiment, we found that a relatively larger 

learning rate is needed for convergence. But the vanilla 
Adam’s adaptive learning rate decay method is prone to low 
convergence or even divergence. In this case, we propose an 
additional synchronous learning rate decay method besides 
Adam optimizer to improve the accuracy and 
communication cost reduction of the models. And it can be 
expressed as formula (3): 

�& = � '
()�                               (3) 

where � denotes the coefficient for determining the rate of 
decay. 

In this case, the modified Adam’s adaptive learning rate 
should be calculated as formula (4): 

��� = �*
���̂!"
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                            (4) 

III. EVALUATION AND DISCUSSION 

In this section, we will firstly introduce the model’s 
basic settings, e.g., the dataset that we use, the model to be 
trained firstly. Secondly, we will evaluate the efficiency 

improvement of proposed FedAvgPR and FedAsyncPR 
using FedAvg and FedAsync as baselines. And the 
efficiency and accuracy enhancement of the proposed 
additional learning-rate decay methods will be evaluated in 
comparison with adaptive learning-rate decay in designed 
experiments. Finally, we will discuss the results of the 
implemented experiments.  

A. Basic Settings 

The dataset used is the ride-sharing order records for the 
estimated time of arrival challenges from Didi Gaia open 
data scheme (https://gaia.didichuxing.com; accessed from 
SIGSPATIAL 2021 GISCUP). This floating car dataset is 
from Didi Chuxing, in Shenzhen, China in August, 2020. It 
includes departure time, traffic information, weather 
information and so on. We processed two weeks data and 
chose 100 drivers’ order data according to the rule-of-thumb 
as the training and testing dataset and 20 participant clients 
in a global round. A brief introduction of the extracted data 
features including journey time, distance, sum link time, 
sum cross time, speed, driver id, distance classification, sum 
crosses, day of week, hour category, weather and link arrival 
status is listed in TABLE I. In this paper, we will implement 
8 federated learning experiments and the key parameters are 
listed in TABLE II. And two indicators are used as the 
evaluation criterion, namely: 

• I1: The optimal MAPE value in 1000 global rounds is 
used to evaluate the experiments’ accuracy 
performance. 

• I2: The number of global round when MAPE value 

reaches the predefined target MAPE +,�-. . Note that 

+,�-.  is set to 10.50%, because when MAPE is 

decreasing toward and around +,�-. , the accuracy 

improvements of most models are rather low.

TABLE I.  THE INTRODUCTION OF EXTRACTED DATA FEATURES 

Feature Type Description 

journey time dense The actual trip time. 
distance dense The actual trip distance. 
sum link time dense The total time of passing every road segment. 
sum cross time dense The total time of passing every signalized intersection. 
speed dense The average speed. 
driver id sparse The driver’s id information. 
distance classification sparse Trip distance classified into levels. 
sum crosses sparse The total number of passed intersections. 
day of week sparse The sorted day of a week. 
hour category sparse 1 denotes rush and 0 denotes leisure. 
weather sparse 0 denotes cloudy, 1 denotes moderate and 2 denotes shower. 
link arrival status sequential The sequential numbers denote every road segment traffic condition. 

TABLE II.  THE BASIC SETTINGS FOR EXPERIMENTS 

WDR Epochs Global Rounds Learning-rate Models 

5 1000 

Adaptive learning-rate decay 

FedAvg 

FedAsync 

FedAvgPR 

FedAsyncPR 

Adaptive and additional synchronous learning-rate decay 

FedAvg 

FedAsync 

FedAvgPR 

FedAsyncPR 
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TABLE III.  SUMMARY OF EXPERIMENTS RESULTS 

Learning-rate Models Optimal MAPE in 1000 Rounds Round Reached Tmape 

Adaptive learning-rate decay 

FedAvg 10.21% 668 
FedAvgPR 10.17% 573 
FedAsync 9.57% 394 
FedAsyncPR 9.52% 219 

Adaptive and additional synchronous learning-rate decay 

FedAvg 8.42% 472 
FedAvgPR 8.55% 404 
FedAsync 9.51% 321 
FedAsyncPR 9.47% 202 

(a)                                                                                                          (b) 

Fig. 3. (a) The asynchronous federated learning test MAPE, (b) The synchronous federated learning test MAPE. 

B. Evaluation of Federated Learning Experiments 

The experiment results are summarized in TABLE III. It 
includes results using FedAvg, FedAvgPR, FedAsync and 
FedAsyncPR with the two kinds of learning-rate decay 
methods.  

As summarized in TABLE III. the accuracies of the 8 
models are in range from 8.42% to 10. 21%. The efficiency 
of FedAvgPR and FedAsyncPR is superior to FedAvg and 
FedAsync, respectively. FedAvgPR and FedAsyncPR can 

reach +,�-.  at 573rd and 219th global round with efficiency 

improvements of 14.22% and 44.41% by adaptive learning-

rate decay method. And they can reach +,�-.  at 404th and 

202nd global round with an efficiency improvements of 
14.41% and 37.07% by a composite learning-rate decay 
method. On the other hand, the additional synchronous 
learning-rate decay method can also improve the models’ 
efficiency. FedAvg and FedAvgPR with additional 

synchronous learning-rate decay can reach +,�-.  at 472nd 

and 404th global round with an acceleration of 29.34% and 
29.49%. In the meantime, FedAsync and FedAsyncPR can 

reach +,�-.  at 321st and 202nd global round with an 

acceleration of 18.53% and 8.42%. 
In addition, the optimal accuracy of asynchronous 

federated learning models is smaller than that of the 
synchronous federated learning models with adaptive 
learning-rate decay. The test accuracy is about 9.50% in 
asynchronous federated learning and 10.20% in 
synchronous federated learning. However, the optimal 
accuracy of asynchronous federated learning models is 
bigger than that of the synchronous federated learning 
models with adaptive learning-rate decay. The test accuracy 
is about 9.50% in asynchronous federated learning and 8.50% 
in synchronous federated learning. And it demonstrates that 

the asynchronous federated learning models can reach 

+,�-.  at a much faster rate.  

In Fig. 3 (a), the accuracy curve of asynchronous 
federated learning model is fluctuant. However, the range of 
accuracy curves by asynchronous federated learning models 
integrated with PLU and RCE strategies is smaller than that 
based on asynchronous federated learning models. 
Furthermore, the additional learning rate decay method can 
also reduce the fluctuation of the accuracy curve fluctuation. 
In Fig. 3 (b), it is obvious that the accuracy curves are 
decreasing smoothly. Not only are the decreasing rate of the 
synchronous federated learning models with additional 
learning-rate decay method higher, but the optimal accuracy 
values are smaller.  

In summary, the above experiment results show that 
federated learning integrated with PLU and RCE and adding 
additional learning-rate decay method can reduce the 
communication cost significantly. PLU and RCE strategies 
can narrow the range of accuracy curve of asynchronous 
federated learning models and additional learning rate decay 
method can also improve the accuracy of synchronous 
federated learning models. 

C. Discussion 

First, the results of the federated learning integrated with 
PLU and RCE indicate that the communication cost can be 
reduced through uploading local model weights, especially, 
the deep layers of neural networks in specific global rounds. 
Moreover, additional synchronous learning-rate method can 

help to reduce global round to reach +,�-. , which could be 

leveraged to evaluate the communication cost reduction. 

Second, the asynchronous federated learning models 
integrated with PLU and RCE strategies have lower levels of 
fluctuation in terms of accuracy. The reason is that the larger 
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differences between local model weights and global model 
weights will lead to a smaller RCE value so that the global 
model will not aggregate the layers of relevant local model 
layers weights. Then the differences between local and 
global model weights may be narrowed.   

Third, additional synchronous learning rate decay method 
can improve the accuracy of synchronous federated learning 
models. But it is not well-behaved to improve the model 
accuracy in asynchronous federated learning models, largely 
due to its fluctuation in modeling accuracy. The accuracy 
differences between adjacent models are usually large so that 
learning rate decay method is less helpful in improving the 
accuracy for asynchronous models. 

Finally, it is obvious that communication cost reduction 
rate of PLU and RCE strategies is higher in asynchronous 
federated learning than in synchronous federated learning. 
The primary cause is the greater differences between local 
model weights and global model weights resulting from the 
asynchronous hysteresis which leads to smaller RCE value. 
Whether to upload local layers of model weights or not 
depends on RCE value and the predefined threshold value. 

IV. CONCLUSION 

In this paper, we introduced federated learning 
frameworks integrated with wide-deep-recurrent learning 
method to estimate vehicle travel time in a privacy-
preserving manner. In addition, we proposed a synchronous 
learning-rate decay method to improve the efficiency and 
accuracy of federated learning models.  

Comparing with the two state-of-the-art baselines, the 
optimal accuracies of the proposed FedAvgPR and 
FedAsyncPR models have largely maintained at 
approximate levels. But their accuracy improvement is 
visibly faster. It also shows that the PLU and RCE strategies 
can immensely reduce the communication cost in 
synchronous federated learning models by about 14.00% 
and it is even more significant in asynchronous federated 
learning way by about 40.00%. The synchronous federated 
learning models with additional learning rate decay method 
can reduce the communication cost in asynchronous and 
synchronous federated learning models by about 30.00% 
and 13.00%, respectively. And it can also improve the 
accuracy of synchronous federated learning models by about 
1.80%. Results suggest that the proposed federated learning 
models can be utilized to improve the travel experience of 
drivers and passengers in ride-sharing and other transport 
services effectively with personal data privacy preservation. 

In the future, we plan to aim at improving the accuracy 
of the federated learning models while maintain the 
reduction in communication cost. In addition, we wish to 
implement the proposed federated learning models on 
larger-scale datasets and more client drivers for practical 
uses. Moreover, we also wish to test the generalization 
ability of the proposed federated learning models on 
different traffic datasets. 
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