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Abstract—The fast-growing number of electric vehicles has
resulted in a variety of charging-related issues, such as the
shortage of public charging piles, the inconvenience of finding
available charging piles, the additional traffic congestion caused
by unnecessary cruising to search for available charging piles,
etc. Since only constructing new charging piles may not signif-
icantly improve the charging efficiency, methods of predicting
charging station occupancy are widely discussed as an effective
means to address these issues. However, several challenges are
encountered in training an efficient and effective model by
utilizing distributed data, improving convergence speed, and
enhancing model generalization ability. To address these issues,
this paper proposes a novel mechanism, named TWAFR-GRU,
which integrates Temporally Weighted Asynchronous Federated
Learning (TWAFL) with Reptile and Gated Recurrent Unit
(GRU). As shown by the holistic evaluation based on the charging
station occupancy dataset, compared with other state-of-the-art
baselines, TWAFR-GRU can 1) decrease MAE, RMSE and RAE
by 19%, 15% and 17% separately and improve R2 by 67%; 2)
cut rounds for the model to converge by 75%; 3) save training
time by 44%; and 4) reduce 17% in forecasting error after the
personalization of the initial model to serve a specific charging
station.

Index Terms—Charging Station Occupancy Prediction, Asyn-
chronous Federated Learning, Meta-learning, Gated Recurrent
Unit

I. INTRODUCTION

Electric vehicles (EVs) have become a popular product in

the automobile market in recent years. Due to the popularity

of low-carbon living and high oil prices, more and more

people opt to purchase EVs. In this context, charging-related

issues have emerged, e.g., insufficient charging piles, the

difficulty in finding available charging piles, the congested

traffic caused by cruising to search for idle charging piles,

etc. Since the number of EVs will inevitably continue to

increase, building new charging piles will not be a sustainable

solution. Therefore, the method of forecasting the charging

station occupancy has been widely discussed [1], which can

effectively guide EVs to the nearest idle charging piles, and

in return, alleviate related traffic congestion.

Given that the average travel time in the city ranges from

15 minutes to 60 minutes, the real-time charging station

occupancy prediction is more useful than the long-term

charging station occupancy prediction in directing EVs to

∗Corresponding author: Linlin You, e-mail: youllin@mail.sysu.edu.cn

the closest idle charging piles and easing traffic congestion

[2]. Under this circumstance, there are three challenges in

the prediction of charging station occupancy, namely: 1) the

data of the charging stations are stored in their own local

databases, making it difficult to centralize the data from all

charging stations for training; 2) the prediction model has

low convergence speed and poor generalization ability; 3) the

synchronous distributed training mode is inefficient, which

may cause a waste of massive computing and communication

resources dispersed at the edge.
Several strategies have been put forth to address the emerg-

ing challenges, including 1) applying federated learning to

allow more decentralized data to participate in model training

[3]; 2) adopting meta-learning to generate an initial model

with strong generalization ability, which enables the model

to converge fast on different tasks [4]; and 3) increasing

training efficiency by applying asynchronous training mode

[5], which can flexibly utilize computing and communication

resources of the clients. However, an integrated mechanism,

which can efficiently generate a real-time charging station

occupancy prediction model with strong generalization ability

and high convergence speed in the case of distributed data, is

still missing.
To fill this gap, we propose an integrated model for real-

time charging station occupancy prediction, namely TWAFR-

GRU, which applies 1) Gated Recurrent Unit (GRU) as

the backbone of the prediction model for charging station

occupancy; 2) Reptile, a first-order meta-learning model that

enables the initial prediction model to have strong gener-

alization capability; 3) Temporally Weighted Asynchronous

Federated Learning (TWAFL), an asynchronous federated

learning model, which allows more distributed data to be used

jointly for model training with improved training performance

in distributed learning scenarios.
In general, the main contributions of this paper can be

summarized as follows:

• Based on Reptile, and TWAFL, an asynchronous fed-

erated meta-learning mechanism, called TWAFR, is de-

signed, and as a general distributed learning framework,

it can improve the model convergence speed and gener-

alization ability to be cost-efficient.

• Based on GRU and TWAFR, an integrated model for

charging station occupancy prediction, called TWAFR-
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GRU, is proposed, which can achieve a high prediction

accuracy and training efficiency by providing a person-

alized model for each charging station;

• TWAFR-GRU is evaluated based on a charging station

occupancy dataset and compared with other state-of-the-

art baselines. As a result, the proposed model achieves

the following improvements, namely 1) a reduction of

19%, 15% and 17% in MAE, RMSE, and RAE sepa-

rately and an improvement of 67% in R2; 2) a boost of

75% in convergence speed; 3) an acceleration of 44% in

training time, and 4) a decrease of 17% in forecasting

error after the personalization of the initial model.

The remainder of this paper is organized as follows. First,

section II summarizes the related work about charging station

occupancy prediction, asynchronous federated learning and

federated meta-learning. Second, the proposed TWAFR-GRU

is presented and evaluated in section III and IV, respectively.

Finally, section V concludes the study and proposes future

work.

II. RELATED WORK

In this section, related work about charging station occu-

pancy prediction, asynchronous federated learning (AFL), and

federated meta-learning (FMeta) are summarized.

A. Charging Station Occupancy Prediction

Charging station occupancy prediction aims to predict

future occupancy based on historical occupancy data, which

is a type of time-series prediction. Currently, time-series

prediction models can be broadly categorized into two groups,

i.e., traditional machine learning models based on statistics

and deep learning models based on artificial neural networks

[6].

The earliest known statistics-based machine learning model

dates back to 1927. The autoregressive model was first put

forth by Yule et al. to investigate the sunspot activity period

[7]. As the successor, Box et al. devised AutoRegressive Inte-

grated Moving Average (ARIMA) [8], which has a significant

impact on the prediction of linear time-series data. Moreover,

Support Vector Regression (SVR), which can be modeled

based on nonlinear functions, was proposed as a solution to

the nonlinear time-series prediction problem [9]. Das et al.

designed Bayesian network, which increases the precision of

time-series prediction by gaining prior knowledge [10].

In recent years, thanks to the rise in computing power and

the advent of the big data era, deep learning models have be-

come a popular solution for a range of time-series prediction

issues [11]. Elman et al. proposed Recurrent Neural Network

(RNN) for time-series prediction [12], extracting the features

of time-series data through connected neural units. To address

gradient explosion in RNN, Hochreiter et al. further proposed

Long Short-Term Memory (LSTM) network [13], which can

remember crucial historical information through three gated

structures. Based on LSTM, Cho et al. simplified the network

structure and presented Gated Recurrent Unit (GRU) network

[14], which reduces the scale of the model parameters while

preserving the model prediction performance.

Currently, the prediction of charging demand and charging

station occupancy is an emerging topic in the field of time-

series prediction. Qiao et al. first applied XGBoost to the

prediction of charging demand [15], which improved the

model’s prediction accuracy and interpretability. Inspired by

the Seq2Seq model in natural language processing, Yi et al.

utilized RNN to forecast the charging demand [16]. Later on,

Hu et al. adopted LSTM in charging demand prediction to

avoid gradient explosion in RNN [17].

B. Asynchronous Federated Learning (AFL)

With the development of Internet of Things, data become

ubiquitous. However, centralized model training performed on

distributed data becomes challenging, as it requires huge com-

putational and communication resources. Therefore, federated

learning was proposed to reduce the enormous computational

and communication burden associated with the central server

[5]. McMahan et al. first proposed Federated Averaging

(FedAvg) [18], in which each client completes model training

and model uploading separately and the server conducts

model aggregation. To further enhance the training efficiency,

Xie et al. proposed Asynchronous Federated Optimization

(FedAsync) [19], where the server executes model aggrega-

tion right after receiving a model from clients. Then Chen et

al. put forth Temporally Weighted Asynchronous Federated

Learning (TWAFL) [20], whose weights are determined by

the staleness of the model. Based on an informative client

activating strategy, a multi-phase layer updating strategy, and

a temporal weight fading strategy, You et al. further pro-

posed a Triple-step AFL mechanism (TrisaFed) [21], which

can significantly enhance the model’s training efficiency and

prediction accuracy.

In recent years, AFL has been widely applied in various

distributed training scenarios. Liu et al. proposed an AFL

framework for edge computing in vehicular networks so

that the security and privacy of the vehicles’ data can be

safeguarded from cyber attack [22]. Then, Sakib et al. applied

AFL with COVID-19 prediction models so as to ensure data

security and save communication bandwidth [23]. Moreover,

Chen et al. designed a novel AFL scheme to boost the training

efficiency of heterogeneous IoT devices [24].

C. Federated Meta-learning (FMeta)

The idea of meta-learning is to enable the initial model

to learn the gradient descent direction on different tasks so

that the initial model can swiftly adapt to different tasks.

Finn et al. first proposed the Model-Agnostic Meta-Learning

(MAML) model [25]. After that, Nichol et al. further designed

Reptile [26], a first-order meta-learning model, which can

significantly ease the computational requirement for meta-

learning. Furthermore, Federated Meta-Learning (FedMeta)

was presented based on MAML and FedAvg [27].

In addition to the theoretical studies mentioned above,

FMeta has now been applied to many fields. Zheng et al.
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Fig. 1. Overall structure of the proposed model

combined federated meta-learning with a fraudulent credit

card detection model, which brought significant improvements

in detection accuracy while ensuring data security [28]. Jiang

et al. introduced federated meta-learning to a fine-grained

location prediction model, so as to protect the user privacy

and increase the prediction accuracy [29]. More recently, Qu

et al. proposed a novel model called ALL that combines first-

order MAML (FOMAML) with FedAvg, which boosts the

convergence speed and forecasting performance of the parking

occupation prediction model [30].

III. METHODOLOGY

As depicted in Figure 1, the mechanism proposed in

this paper consists of three modules, namely 1) backbone

module, which determines the backbone model for predicting

charging station occupancy; 2) asynchronous federated meta-

learning module, which adopts AFL and meta-learning to

obtain an initial model with high generalization ability; and 3)

personalization module, where the initial model is separately

adapted on different charging station occupancy prediction

tasks. In the following sections, the details of each module

will be discussed.

A. Backbone Module

It is responsible for deciding what backbone network to

use for prediction. An appropriate backbone network will

be helpful to achieve a high prediction performance. GRU

is an improved model based on RNN and LSTM [14], in

comparison to RNN, GRU can handle the gradient explosion

problem during backpropagation, and compared to LSTM, it

can also maintain excellent prediction performance while re-

ducing the scale of model parameters, which can significantly

save computing resources and training time.

Such that, we adopt GRU as the backbone network of

the prediction model, whose structure is shown in Fig-

ure 2. In this model, at timestamp t, the vector X =
(xt−5, xt−4, xt−3, xt−2, xt−1, xt) is the input vector, which

represents the occupancy over the previous six timestamps,

and the yt+λ is the output, where λ denotes the prediction

interval.

Fig. 2. The backbone model structure

Formula 1 describes the GRU calculation procedure, where

γt and zt stand for the reset gate vector and update gate vector

respectively; nt represents the candidate activation vector; ht

and ht−1 are the output vector of the current timestamp t
and previous timestamp (t− 1), respectively; xt is the input

vector; Wr, Wu, Wn, Ur, Uu, Un, br and bu are trainable
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model parameters; σ and tanh stand for sigmoid function and

tanh function severally; ◦ denotes the Hadamard product.

γt = σ(Wγxt + Uγht−1 + bγ)

zt = σ(Wuxt + Uuht−1 + bu)

nt = tanh(Wnxt + γt ◦ (Unht−1))

ht = (1− zt) ◦ ht−1 + zt ◦ nt

(1)

B. Asynchronous Federated Meta-learning Module

AFL and meta-learning are emerging topics in deep learn-

ing. In general, AFL can bridge distributed data and com-

puting resources more efficiently, and meta-learning can train

an initial model that can be adapted rapidly for new tasks.

Such that, an asynchronous federated meta-learning module

is studied to inherit their benefits to not only enable efficient

training by harnessing distributed data but also strengthen the

generality of the model.

As illustrated in Figure 3, the module combines Reptile

with TWAFL to build Temporally Weighted Asynchronous

Federated Reptile (TWAFR).

1) Reptile: Given N tasks, Reptile trains the initial model

by first executing k-step (k>1) Stochastic Gradient Descent

(SGD) on data from each source, then utilizing (π − π
′
j) as

the gradient descent direction, and finally updates the model

based on gradient descent, as defined in the Formula 2, where

j denotes the jth task; π stands for the original model; π
′
j

represents the updated model of the jth task; π∗ denotes the

updated global model; N is the number of tasks; β is the

learning rate of the meta-learning training; SGD denotes the

k-step SGD.

π
′
j = SGD(π)

π∗ = π − β
N∑
j=1

(π − π
′
j)

(2)

2) TWAFL: Due to the fact that the freshness of uploaded

models may vary among each other in asynchronous federated

learning, and intuitively, the model with higher freshness

may be more effective and more representative, a temporally

weighted strategy for AFL is proposed to aggregate local

models with a weight measuring their staleness. Since the

aggregation process is managed by the server, the server will

assign model weights based on the models’ freshness (t∗j − i)
and data size nj as defined in Formula 3, where ωj denotes

the weight of jth client’s updated model; i stands for the

current timestamp; t∗j represents the timestamp of jth client’s

updated model; nj signifies the data size of the jth client; j
denotes the jth client; N is the number of the clients.

ωj =

nj∑N
j=1 nj

e−(t∗j−i)

∑N
j=1

nj∑N
j=1 nj

e−(t∗j−i)
(3)

After that, the server will use the weight to update the

global model according to Formula 4, where θi denotes the

updated global model at the current training round i and π∗j
represents the local model received from the jth client.

θi =
N∑
j=1

ωj × π∗j (4)

3) TWAFR: Based on Reptile and TWAFL, a temporally

weighted asynchronous federated reptile (TWAFR) algorithm

is proposed as depicted in Algorithm 1, which runs on both

the clients and the server:

• TWAFR for the client: First, client j receives the global

model θi−1 of round (i − 1) and the current timestamp

i from the server. Second, client j clones θi−1 as the

initial model πj . Third, client j samples N tasks from

its local data randomly. Fourth, client j updates model

π∗j according to the Formula 2. Fifth, client j clones

timestamp i as its local updating timestamp t∗j . Finally,

client j uploads the model π∗j , the timestamp t∗j and the

data size nj to the server.

• TWAFR for the server: First, the server broadcast the

global model of the previous round θi−1 and the current

timestamp i to the clients that completed previous rounds

of training. Second, the server continuously receives the

local model, timestamp, and data size of each client.

Third, after a predefined timer gets exceeded, the server

calculates the temporal weight for each received local

model according to Formula 3. Eventually, the server

performs model aggregation to update the global model

according to Formula 4.

Algorithm 1 The pseudocode for TWAFR

Function at the Server
1: for i=1,2,. . . ,M do
2: Transferring θi−1 and i to clients

3: Receive π∗j , t∗j and nj from client j
4: while the time limit is reached do
5: Assign model weights ωj according to Formula 3

6: Update global model θi according to Formula 4

7: end while
8: end for

Function at each client
1: Receiving θi−1 and i from the server

2: Initializing the local model πj = θi−1

3: Sampling N tasks randomly

4: Updating the model π∗j according to Formula 2

5: Updating the timestamp t∗j = i
6: Uploading π∗j , t∗j and nj to the server

In general, TWAFR can inherit the advantages of Reptile

and TWAFL to train an initial model with high generality

by collaborating dispersed and isolated local data of each

client in a privacy-preserving and cost-efficient manner, and

aggregating received parameters according to their temporal

weights measuring their staleness. Therefore, the initial model
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Fig. 3. The asynchronous federated meta-learning module implementing temporally weighted asynchronous federated reptile (TWAFR) by integrating TWAFL
(temporally weighted asynchronous federated learning) with Reptile

can be rapidly trained with high performance as evaluated in

Sections IV-B1, IV-B2, and IV-B3.

C. Personalization Module

The global initial model has a great capacity for gener-

alization by following numerous iterations of asynchronous

federated meta-learning training. However, its performance

may be unsatisfactory in a specific prediction task. Therefore,

before the actual usage of the initial model, the client needs

to localize the initial model based on its own local data.

In particular, each client updates the initial model and

conducts personalized training, as stated in the Formula 5,

where θ denotes the global initial model; θj represents the

updated initial model of the jth client; θ∗j signifies the

personalized model of the jth client; SGD stands for the

multi-step SGD.

θj = θ

θ∗j = SGD(θj)
(5)

In general, after a few rounds of personalization, the

localized model can achieve stable and high performance,

which is evaluated in Section IV-B4.

In summary, the proposed mechanism, named TWAFR-

GRU, integrates GRU as its backbone model to make charging

station occupation prediction, use meta-learning as a model

adaptor to train an initial model with high generality, and

perform asynchronous federated learning as a training opti-

mizer to build a global initial model by collaborating local

resources of clients in a cost-efficient and privacy-preserving

manner. Based on the initial model trained from TWAFR-

GRU, a high-performance local model can be created through

a personalization process for each station.

IV. PERFORMANCE EVALUATION

In this section, the experimental setting is given first, fol-

lowed by analysis and discussion of the experimental results

to demonstrate the merit of TWAFR-GRU.

A. Experiment Setting

It includes a common dataset, compared baselines, running

configuration, and evaluation metrics.

1) Dataset Preparation: The evaluation dataset contains

occupancy data of 35 charging stations in Guangzhou, China,

whose geographical distribution is plotted in Figure 4. This

dataset’s occupancy data spans from December 10, 2021 to

January 7, 2022, with a 5-minute interval. In summary, there

are 8,352 occupancy records for each charging station, and

thus, in total, about 0.3 million records. It’s worth noting that

the dataset can be downloaded from the link1.

2) Compared Baselines: In order to evaluate the perfor-

mance of the proposed model, there are two conventional

machine learning and three deep learning models are used

to be compared, namely:

• The two machine learning models include 1) ARIMA:

Autoregressive Integrated Moving Average Model, a

classic machine learning model [8], and 2) SVR: Support

Vector Regression, a statistics-based machine learning

model [9].

• The three deep learning models include 1) RNN: Recur-

rent Neural Network [12], 2) LSTM: Long Short-Term

Memory, an improved model based on RNN [13], and

3) GRU: Gated Recurrent Unit, an improved model of

LSTM [14].

Moreover, three federated learning methods are used, i.e.,

1) FedAvg (widely used synchronous federated learning

1https://github.com/IntelligentSystemsLab/TWAFR-GRU
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Fig. 4. Spatial distribution of the charging stations in Guangzhou, China

TABLE I
THE HYPERPARAMETERS SETTING OF THE MODELS

Model Parameter Value

*

total rounds of global training 500
total rounds of personalization adaption 10

learning rate of SGD 0.001
learning rate of meta update 1

loss function MSE
total steps in k-step SGD 5

optimizer Adam

ARIMA (p,d,q) (6,0,6)
SVR kernel, epsilon RBF, 0.001

* denotes models except ARIMA and SVR.

method) [18], 2) FedRep integrating FedAvg and Reptile, and

3) TWAFR (the proposed method).

Finally, the hyperparameters used by compared models are

listed in Table I.

3) Evaluation Configuration: The charging station occu-

pancy dataset is split into a training dataset and a testing

dataset containing 30 and 5 charging stations, respectively.

Then, the data of each charging station are subdivided into

support set and query set. Data from December 10, 2021 to

December 31, 2021 are used as the support set, and data from

January 1, 2022 to January 7, 2022 are utilized as the query

set. In this experiment, the training dataset is used to pre-train

the model, followed by personalized training on the testing

dataset’s support set and evaluation on the testing dataset’s

query set. Each model is tested on four prediction intervals:

15, 30, 45, and 60 minutes. Moreover, each experiment is

repeated 10 times to ensure the reliability of the evaluation.

4) Evaluation Metrics: As defined in Formula 6, where

y
′
i and yi denote predicted value and the real value, respec-

tively, Mean Absolute Error (MAE), Root Mean Square Error

(RMSE), Relative Absolute Error (RAE) and Coefficient of

Determination (R2) are used as the evaluation metrics.

MAE =
N∑
i=1

|y′
i − yi|

RMSE =

√√√√ 1

n

N∑
i=1

(y
′
i − yi)2

RAE =

∑N
i=1 |y

′
i − yi|∑N

i=1 |ȳi − yi|

R2 = 1−
∑N

i=1(y
′
i − yi)

2

∑N
i=1(ȳi − yi)2

(6)

5) Running environment: The evaluation is conducted on a

Windows workstation, which is equipped with two NVIDIA

GeForce RTX 3090 GPU, an Intel Gold 5218R Two-Core

Processor CPU, and 512 G RAM.

B. Evaluation Results

The evaluation results are analyzed from four aspects,

namely forecasting error, convergence speed, training time,

and model generality.

1) Forecasting Error: According to the results in Table II,

the following observations can be made. First, deep learning

models are superior to machine learning models in all four

evaluation metrics, as more features can be extracted and

modeled by the interconnected neurons.

Second, the deep learning model applying TWAFR and

FedRep can significantly outperform the ones adopting Fe-

dAvg. Specifically, TWAFR-Aver models can decrease MAE,

RMSE, and RAE by 19.12%, 15.43%, and 17.25% separately

and improve R2 by 67.43%. Similarly, FedRep-Aver can

achieve a reduction of about 19.20%, 15.49%, and 17.33%
in MAE, RMSE, and RAE, respectively, and an improvement

of 67.73% in R2.

Finally, TWAFR-GRU achieves the best performance com-

pared with other baseline models. As summarized in Table

II, MAE, RMSE, RAE and R2 of TWAFR-GRU can reach

10.50×10−2, 13.63×10−2, 66.87% and 44.98% respectively,

which outperforms all the compared models.

2) Convergence speed: As illustrated in Figure 5, TWAFR-

GRU and FedRep-GRU can get the global model to converge

faster than FedAvg-GRU. Specifically, to reach the target

RMSE smaller than 0.20, FedAvg-GRU needs 200 global

training rounds. However, TWAFR-GRU and FedRep-GRU

only need 50 rounds. Hence, a boost of 75% in the con-

vergence speed can be achieved. Besides that, it also can be

observed that TWAFR-GRU and FedRep-GRU can eventually

achieve a smaller loss compared to FedAvg-GRU, illustrating

that they can train an initial model more accurately. Finally,

it can be seen that a similar RMSE curve is shared between

TWAFR-GRU and FedRep-GRU, indicating that compared to

the synchronous method, the asynchronous method TWAFR

won’t deteriorate the model convergence performance even

though less training time is required (as shown in Figure 6).
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TABLE II
THE SUMMARY OF MODEL PERFORMANCE

Model MAE(×10−2) RMSE(×10−2) RAE(%) R2(%)

TWAFR-GRU∗ 10.50 13.63 66.87 44.98
TWAFR-LSTM 10.81 13.93 68.85 42.91
TWAFR-RNN 10.68 13.86 67.94 43.36
TWAFR-Aver† 10.66 13.81 67.89 43.75

FedRep-GRU 10.76 13.94 68.63 42.74
FedRep-LSTM 10.66 13.75 67.86 44.26
FedRep-RNN 10.52 13.70 66.97 44.50
FedRep-Aver‡ 10.65 13.80 67.82 43.83

FedAvg-GRU 13.05 16.28 81.15 26.55
FedAvg-LSTM 12.96 16.11 81.01 27.80
FedAvg-RNN 13.54 16.60 83.97 24.05
FedAvg-Aver§ 13.18 16.33 82.04 26.13

ARIMA 15.71 19.06 99.11 -2.94

SVR 12.89 16.18 81.22 24.87

* denotes the proposed model.† denotes the average of the TWAFR-based models.‡ denotes the average of the FedRep-based models.§ denotes the average of the FedAvg-based models.

Fig. 5. The RMSE curves of global training

3) Training Time: As illustrated in Figure 6, at the end

of 500 global training rounds, FedRep-GRU is slightly bet-

ter than FedAvg-GRU, however, TWAFR-GRU can surpass

FedRep-GRU by about 44%, even though they share a similar

performance as shown in Figure 5.

4) Model generality: It can be seen from Figure 7, which

plots the RMSE curves of TWAFR-GRU, FedRep-GRU and

FedAvg-GRU in personalized training, that the TWAFR-GRU

has the best adaptability to the new tasks. The final RMSE

of TWAFR-GRU is 0.136, which is notably smaller than

FedRep-GRU (0.140) and FedAvg-GRU (0.163), demonstrat-

ing that the TWAFR is beneficial for models to be adapted to

new tasks. Moreover, it is worth noting that the initial RMSE

of TWAFR-GRU and FedRep-GRU is also much smaller than

the final RMSE of the FedAvg-GRU, greatly proving that the

federated meta-learning enables the model to have a better

Fig. 6. The comparison of global training duration

Fig. 7. The RMSE curves of personalized training

generalization ability.

C. Discussion

Based on the above experiment results, first, TWAFR-

based and FedRep-based models can outperform FedAvg-

based models in forecasting error, convergence speed, and

generalization ability, which proves the efficiency and effec-

tiveness of federated meta-learning in supporting charging

station occupancy prediction. Second, the performance in

forecasting error, convergence speed, and generalization abil-

ity between TWAFR-based models and FedRep-based models

are comparable, demonstrating that the asynchronous method

won’t result in the degradation of model performance. Third,

compared to the synchronous methods, the asynchronous

method TWAFR can lead to a huge reduction in training

time, proving that the TWAFR is cost-efficient. Finally, it

can be seen from the whole evaluation that TWAFR-GRU is

superior to all the other models with the best performance in
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every aspect. Therefore, the proposed method TWAFR-GRU

can train an initial model with high generalization capability

for each charging station to adopt it for a more accurate

occupancy prediction but with a relatively low training cost.

V. CONCLUSIONS

With the penetration of EVs, the prediction of charg-

ing station occupancy becomes a crucial part of intelligent

transportation systems to direct drivers to the nearest idle

charging pile with unnecessary cruising for idle charging piles

reduced. In this paper, a novel model, called TWAFR-GRU,

is proposed for the real-time charging occupancy prediction,

which integrates 1) asynchronous federated learning, enabling

more distributed data to participate in training efficiently;

2) Reptile, enhancing the generalization ability and con-

vergence speed of the initial model; 3) GRU, maintaining

prediction performance while reducing the scale of the model

parameters. According to the evaluation results, the proposed

model outperforms other state-of-the-art baselines in every as-

pect, namely, prediction accuracy, convergence speed, training

time, and generalization ability.

Nevertheless, TWAFR-GRU still has the potential to be

improved by adopting more strategies, such as designing

better backbone models, applying dynamic client selection

strategies, etc. In the future, we will further design an im-

proved model, which will be equipped with a dynamic client

selection strategy as well as a multi-phase layer updating

strategy to further improve its prediction performance and

training efficiency.
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